Advertisement

Uncertainty analysis of the specific absorption rate induced in a phantom using a stochastic spectral collocation method

  • Ouanès Aiouaz
  • David Lautru
  • Man-Fai Wong
  • Emmanuelle Conil
  • Azeddine Gati
  • Joe Wiart
  • Victor Fouad Hanna
Article

Abstract

Uncertainty analysis of human exposure to radio waves is studied with a spectral approach of stochastic collocation methods. This approach allows determining in an efficient way the statistical moments of the output variable, the specific absorption rate, with respect to uncertain input parameters. Polynomial chaos expansions are used for the random output, and the spectral coefficients are determined by projection or regression. These techniques are used with an electromagnetic solver based on a finite difference time domain scheme. The convergence of the statistical moments is analyzed for two case studies. Global sensitivity is also analyzed for the uncertain position of a cellular phone in the close vicinity of a human head model.

Keywords

Uncertainty Stochastic collocation methods FDTD Specific absorption rate (SAR) Sensitivity 

References

  1. 1.
    ICNIRP Guidelines (April 1998)—guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Physics, vol 74, no 4Google Scholar
  2. 2.
    IEEE Std C95.3-2002, IEEE Recommended Practice for Measurements and Computation of Radiofrequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 kHz-300 GHzGoogle Scholar
  3. 3.
    Chauvière C, Hesthaven JS, Lurati L (2006) Computational modeling of uncertainty in time-domain electromagnetics. SIAM J Sci Comput 28:751–775MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ajayi A, Ingrey P, Sewell P, Christopoulos C (2008) Direct computation of statistical variations in electromagnetic problems. IEEE Trans Electromagn Compat 50:325–332CrossRefGoogle Scholar
  5. 5.
    Silly-Carette J, Lautru D, Wong MF, Gati A, Wiart J, Fouad Hanna V (2009) Variability on the propagation of a plane wave using stochastic collocation methods in a bio electromagnetic application. IEEE Microw Wirel Compon Lett 19:185–187CrossRefGoogle Scholar
  6. 6.
    Sudret B Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Sys. Safety, 2008, 93, 964–979. [Online]. Available: http://bruno.sudret.free.fr/hdr.html
  7. 7.
    Xiu D, Karniadakis GEM (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. J Sci Comput 24:619–644MathSciNetzbMATHGoogle Scholar
  8. 8.
    Smolyak S (1963) Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math Dokl 4:240–243Google Scholar
  9. 9.
    Clenshaw C, Curtis A (1960) A method for numerical integration on an automatic computer. Num Math 2:197–205MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    E Conil, A Hadjem, A Gati, M-F Wong and J Wiart, Influence of plane wave incidence angle on whole body exposure at 2100 MHz, IEEE Trans. on EMC, submittedGoogle Scholar
  11. 11.
    IEC (January 2009) Project 62209 Ed. 1.0 Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposureGoogle Scholar
  12. 12.
  13. 13.

Copyright information

© Institut Télécom and Springer-Verlag 2011

Authors and Affiliations

  • Ouanès Aiouaz
    • 1
  • David Lautru
    • 2
  • Man-Fai Wong
    • 1
  • Emmanuelle Conil
    • 1
  • Azeddine Gati
    • 1
  • Joe Wiart
    • 1
  • Victor Fouad Hanna
    • 2
  1. 1.WHIST Lab common lab of Orange Labs R&D and Institut TelecomIssy-les-MoulineauxFrance
  2. 2.UPMC, Univ. Paris 06, UR2, L2E, BC252ParisFrance

Personalised recommendations