Advertisement

Antenna design and channel modeling in the BAN context—part I: antennas

  • Christophe Roblin
  • Jean-Marc Laheurte
  • Raffaele D’Errico
  • Azeddine Gati
  • David Lautru
  • Thierry Alvès
  • Hanae Terchoune
  • Farid Bouttout
Article

Abstract

The first results achieved in the French ANR (National Research Agency) project BANET (Body Area NEtwork and Technologies) are presented (Part I). This project mainly deals with the antenna design in the context of Body Area Networks applications and channel characterization. General conclusions are drawn on the body impact on the antenna performance for on–on and in–on communications (Medical Implant Communication Systems). Narrow-band and ultra-wideband contexts are addressed both numerically and experimentally, and it is shown that design questions are significantly different for each case, leading to different constraints and guidelines. For narrow-band antennas, an alternative and original approach of desensitization using ferrite sheets is proposed and compared to classical techniques based on ground-plane screening. The characterization of numerical phantoms is also analyzed with narrow-band canonical antennas. For the specific on–on scenario, morphologies and electrical properties of the human tissues are also included in the topics of interest. For ultra-wideband antennas, focus is put on planar balanced designs, notably to reduce harmful “cable effects” occurring during the antenna characterization or the channel sounding. For both types of antennas, the main parameter under study is the distance to the body, which has a significant influence.

Keywords

Body area network Antenna Input impedance Total efficiency Radiation pattern Antenna miniaturization UWB Body absorption Human tissues permittivity Medical implants MICS On-body channel In on-body channel 

Notes

Acknowledgments

Authors would like to thank Daniel Toledano and Lara Traver for their contribution to measurement campaigns at ENSTA-ParisTech, Serge Bories for his initial contribution and Laurent Ouvry—from CEA-Leti—for his wise scientific advice, and Amir Yousuf, Franscesco Guidi, Enrique De Mur, and Nizar Malkiya for their help at ENSTA-ParisTech.

References

  1. 1.
    Roblin Ch, LaheurteJ-M, D’Errico R, Gati A, Lautru D, Alvès T, Terchoune H, Bouttout F. “Antenna design and channel modelling in the BAN context—part II: channel,” submitted to annals of telecommunications, “special issue on body area networks applications and technologies,” SpringerGoogle Scholar
  2. 2.
    IEEE P802.15-08-0780-09-0006 (K. Y. Yazdandoost and K. Sayrafian-Pour): channel model for body area network (BAN), IEEE 802.15 Working Group Document, April 2009Google Scholar
  3. 3.
    Salonen P, Kim J, Rahmat-Samii Y (2005) Dual-band E-shaped patch wearable textile antenna. IEEE Proc. AP-S, WashingtonGoogle Scholar
  4. 4.
    Ouyang Y, Karayianni E, Chappell WJ (2005) Effect of fabric patterns on electrotextile patch antennas. IEEE Proc. APS, WashingtonGoogle Scholar
  5. 5.
    Tanaka M, Jang J-H (2003) Wearable microstrip antenna. IEEE Antennas and Propag Int Symp 2:704–707Google Scholar
  6. 6.
    Klemm M, Locher I, Troster G (2004) A novel circularly polarized textile antenna for wearable applications. 34th European Microwave Conferance (EuMC), Amsterdam, NetherlandsGoogle Scholar
  7. 7.
    Klemm M, Troester G (2006) Textile UWB antennas for wireless body area networks. IEEE Trans Antennas Propag 54(11):3192–3197CrossRefGoogle Scholar
  8. 8.
    Zhu S, Langley R (2007) Dual-band wearable antennas over EBG substrate. Electron Lett 43(3):141–142CrossRefGoogle Scholar
  9. 9.
    Sanz-Izquierdo B, Miller JA, Batchelor JC, Sobhy MI (2010) Dual-band wearable metallic button antennas and transmission in body area networks. IET Microw Antennas Propag 4(2):182–190CrossRefGoogle Scholar
  10. 10.
    Almpanis G, Fumeaux C, Fröhlich J, Vahldieck R (2009) A truncated conical dielectric resonator antennafor body-area network applications. IEEE Antennas Wirel Propag Lett 8:279–282CrossRefGoogle Scholar
  11. 11.
    Terence SP, Chen ZN (2005) Effects of human body on performance of wearable PIFAs and RF transmission. IEEE Proc. AP-S, WashingtonGoogle Scholar
  12. 12.
    Kamarudin MR, Nechayev YI, Hall PS (2005) Performance of antennas in the on-body environment. IEEE AP-S Int. Symp, WashingtonGoogle Scholar
  13. 13.
    Alomainy A, Hao Y, Parini CG, Hall PS (2005) Comparison between two different antennas for UWB on-body propagation measurements. IEEE Antennas Wirel Propag Lett 4(1):31–34CrossRefGoogle Scholar
  14. 14.
    See TSP, Chen ZN (2009) Experimental characterization of UWB antennas for on-body communications. IEEE Trans Antennas Propag 57(4):866–874CrossRefGoogle Scholar
  15. 15.
    Ackerman MJ (1995) Accessing the Visible Human Project. DLib Mag [Online]. Available at http://www.nlm.nih.gov/research/visible/visible_human.html
  16. 16.
    Conil E, Hadjem A, Lacroux F, Wong MF, Wiart J (2008) Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain. Phys Med Biol 53:1511–1525CrossRefGoogle Scholar
  17. 17.
    Alves T, Augustine R, Quéffélec P, Grzeskowiak M, Poussot B, Laheurte J-M (2009) Polymeric ferrite-loaded antennas for on-body communications. Microwave Opt Technol Lett 51(11):2530–2533CrossRefGoogle Scholar
  18. 18.
    Newman EH, Bohley P, et Walter CH (1975) Two Methods for the Measurement of Antenna Efficiency. IEEE Transactions on Antennas and Propagation, Vol. 23, No. 4Google Scholar
  19. 19.
    Salim T, Hall PS (2006) Efficiency measurement of antennas for on-body communications. MOTL 48(11):2256–2259Google Scholar
  20. 20.
    Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269CrossRefGoogle Scholar
  21. 21.
    Baker-Jarvis J, Vanzura EJ, Kissik WA (1990) Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans Microwave Theory Tech 38(8):1096–1103CrossRefGoogle Scholar
  22. 22.
    Chen W-T, Chuang H-R (1998) Numerical computation of the EM coupling between a circular loop antenna and a full-scale human-body model. IEEE Trans Microwave Theory Tech 46(10):1516–1520CrossRefGoogle Scholar
  23. 23.
    Chen W-T, Chuang H-R (1998) Numerical computation of human interaction with arbitrarily oriented superquadratic loop antennas in personal communications. IEEE Trans Antennas Propag 46(6):821–828CrossRefGoogle Scholar
  24. 24.
    Chen ZN, Liu GC, See TSP (2009) Transmission of RF signals between MICS loop antennas in free space and implanted in the human head. IEEE Trans Antennas Propag 57(6):1850–1854CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Hall PS, Hao Y (2006) Antennas and propagation for body-centric wireless communications. Artech House, BostonGoogle Scholar
  27. 27.
    Alomainy A, Hao Y (2009) Modeling and characterization of biotelemetric radio channel from ingested implants considering organ contents. IEEE Trans Antennas Propag 57:999–1005CrossRefGoogle Scholar
  28. 28.
    Ghannoum H, Bories S, D’Errico R (2006) Small-size UWB planar antenna and its behaviour in WBAN/WPAN applications. IEE Seminar on Ultra Wideband Systems, Technologies and Applications, London, Apr. 20Google Scholar
  29. 29.
    Ghannoum H: Etude conjointe antenne/canal pour les communications Ultra Large Bande en présence du corps humain, Doctorat ENST et ENSTA, Dec. 2006 pastel.paristech.org/2083/
  30. 30.
    Bories S, Ghannoum H, Roblin C (2005) Robust planar stripline monopole for UWB terminal applications. Proc. 2005 IEEE International Conference on Ultra-WidebandGoogle Scholar
  31. 31.
    D'Errico R, Ghannoum H, Roblin Ch, Sibille A (2006) “Small Semi Directional Antenna for UWB Terminal Applications,” First European Conference on Antennas and Propagation, EuCAP’06, Nice, 6–10 NovGoogle Scholar
  32. 32.
    Roblin Ch, Sibille A, Bories S (2005) Semi-directional small antenna design for UWB Multimedia Terminals. ANTEM 2005 Proceedings, St. Malo, pp.142–143Google Scholar
  33. 33.
    Roblin Ch, Bories S, Sibille A (2003) Characterization tools of antennas in the time domain. IWUWBS, OuluGoogle Scholar
  34. 34.
    Demeestere F, Delaveaud C, Keignart J, Bories S (2006) Compact dipole for low frequency band UWB applications. First European Conference on Antennas and Propagation, 2006. EuCAP 2006, Nice France, 6–10 Nov 2006Google Scholar
  35. 35.
    Demeestere F, Delaveaud C, Keignart J (2006) A compact UWB antenna with a wide band circuit model and a time domain characterization. IEEE International Conference on Ultra-Wideband, Waltham, MA, 24–27 Sept 2006Google Scholar
  36. 36.
    D’Errico R, Ouvry L (2009) Time-variant BAN channel characterization, PIMRC 2009, Tokyo, Japan, 13–16 SeptGoogle Scholar
  37. 37.
    Soras C, Karaboikis M, Tsachtsiris G, Makios V (2002) Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4 GHz ISM Band. IEEE Antennas and Propagation Magazine 44, No. 1Google Scholar
  38. 38.
    Huynh M-C, Stutzman W (2003) Ground plane effects on planar inverted-F antenna (PIFA) performance. IEE Proc Microw Antennas Propag 150, No. 4Google Scholar
  39. 39.
    Pasquet F, Jecko B (2001) New developments of the wire-patch antenna for ceramic technology and multifunction applications. IEEE Antennas and Propagation Society International SymposiumGoogle Scholar
  40. 40.
    I.G. Zubal, C.R. Harrell, E.O. Smith, A.L. Smith (1995) Two dedicated voxel-based anthropomorphic (torso and head) phantoms. Proceedings of the International Workshop: Voxel Phantom Development, NRPB Chilton, UK, pp 105–111Google Scholar
  41. 41.
    Dimbylow PJ (1996) The development of realistic voxel phantoms for electromagnetic field dosimetry. Proc Int. Workshop on Voxel Phantom Development (National Radiological Protection Board Report), pp. 1–7Google Scholar
  42. 42.
    Nagaoka T, Watanabe S, Sakurai K, Kunieda E, Watanabe S, Taki M, Yamanaka Y (2004) “Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight and application of models to radio-frequency electromagnetic field dosimetry”. Phys Med Biol 49:1–15CrossRefGoogle Scholar

Copyright information

© Institut Télécom and Springer-Verlag 2011

Authors and Affiliations

  • Christophe Roblin
    • 1
  • Jean-Marc Laheurte
    • 2
  • Raffaele D’Errico
    • 3
  • Azeddine Gati
    • 4
  • David Lautru
    • 5
  • Thierry Alvès
    • 2
  • Hanae Terchoune
    • 4
  • Farid Bouttout
    • 5
  1. 1.ENSTA Paris-TechParis cedex 15France
  2. 2.ESYCOM, Université Paris-Est Marne-La-ValléeMarne La ValléeFrance
  3. 3.CEA-LetiGrenoble cedex 9France
  4. 4.Orange LabIssy les MoulineauxFrance
  5. 5.UPMC, Université Paris 06ParisFrance

Personalised recommendations