Antenna design and channel modeling in the BAN context—part II: channel

  • Christophe RoblinEmail author
  • Jean-Marc Laheurte
  • Raffaele D’Errico
  • Azeddine Gati
  • David Lautru
  • Thierry Alvès
  • Hanae Terchoune
  • Farid Bouttout


The first results achieved in the French ANR (National Research Agency) project BANET (Body Area NEtwork and Technologies) concerning the channel characterization and modeling aspects of Body Area Networks (BANs) are presented (part II). A scenario-based approach is used to determine the BAN statistical behavior, trends, and eventually models, from numerous measurement campaigns. Measurement setups are carefully described in the UWB context. The numerous sources of variability of the channel are addressed. A particular focus is put on the time-variant channel, showing notably that it is the main cause of the slow fading variance. Issues related to the data processing and the measurement uncertainties are also described.


Body Area Network Antenna UWB Path loss Propagation Body absorption Human tissues permittivity BAN propagation channel UWB BAN channel Channel measurements Channel models On-body channel 



Authors would like to thank Daniel Toledano and Lara Traver for their contribution to measurement campaigns at ENSTA-ParisTech, Serge Bories for his initial contribution and Laurent Ouvry—from CEA-Leti—for his wise scientific advice, and Amir Yousuf, Franscesco Guidi, Enrique De Mur, and Nizar Malkiya for their help at ENSTA-ParisTech.


  1. 1.
    Roblin Ch, Laheurte J-M, D'Errico R, Gati A, Lautru D, Alvès T, Terchoune H, Bouttout F “Antenna design and channel modelling in the BAN context—part I: antennas,” submitted to Annals of Telecommunications, “Special issue on Body Area Networks Applications and Technologies,” SpringerGoogle Scholar
  2. 2.
    Yazdandoost KY, Sayrafian-Pour K (2009) IEEE P802.15-08-0780-09-0006: channel model for body area network (BAN), IEEE 802.15 Working Group Document, AprilGoogle Scholar
  3. 3.
    Zasowski T, Althaus F, Wittneben A, Troster G (2003) UWB for noninvasive wireless body area networks: channel measurements and results, UWBSTGoogle Scholar
  4. 4.
    Obayashi S, Zander J (1998) A body-shadowing model for indoor radio communication environments. IEEE Trans Antennas Propag 46(6):920–927CrossRefGoogle Scholar
  5. 5.
    King HE (1975) Characteristics of body-mounted antennas for personal radio sets. IEEE Trans Antennas Propag AP23:242–244Google Scholar
  6. 6.
    Andersen JB, Hansen F (1977) Antennas for VHF/UHF personal radio: a theoretical and experimental study of characteristics and performance. IEEE Trans Veh Technol 26(4):349–357CrossRefGoogle Scholar
  7. 7.
    Debye P (1929) Polar molecules, edition. New York, The chemical catalogGoogle Scholar
  8. 8.
    Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. I. Alternating current characteristics. J Chem Phys 9:341–351CrossRefGoogle Scholar
  9. 9.
    Foster KR, Schwan HP (1989) Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng 17(1):26–104Google Scholar
  10. 10.
    Durney CH, Massoudi, Iskander MF (1986) Radiofrequency radiation dosimetry handbook. Brooks Air Force Base-USAFSAM-TR-85-73, San Antonio, TXGoogle Scholar
  11. 11.
    Zasowski T, Meyer G, Althaus F, Wittneben A (2006) UWB signal propagation at the human head. IEEE Trans Microwave Theor Tech 54(4):1836–1845CrossRefGoogle Scholar
  12. 12.
    Roy SV, Oestges C, Horlin F, De Doncker Ph (2007) On-body propagation velocity estimation using ultra-wideband frequency-domain spatial correlation analysis. Electron Lett 43(25), DecGoogle Scholar
  13. 13.
    (2006) IEEE 802.15.4a channel model—final report, NovGoogle Scholar
  14. 14.
    Molisch AF, Cassioli D, Chong C, Emami S, Fort B, Kannan A, Karedal J, Kunish J, Schantz HG (2006) A comprehensive standardized model for ultrawideband propagation channels. IEEE Trans Antennas Propag 54(11):3151–3166CrossRefGoogle Scholar
  15. 15.
    Zasowski T, Meyer G, Althaus F, Wittneben A (2005) Propagation effects in UWB body area networks, 2005 IEEE International Conference on Ultra-Wideband, Zurich, 5–8 SeptGoogle Scholar
  16. 16.
    Fort A, Desset C, De Doncker P, Wambacq P, Van Biessen L (2006) An ultra-wideband body area propagation channel model–from statistics to implementation. IEEE transactions on MTT 54(4):1827–1835CrossRefGoogle Scholar
  17. 17.
    Fort A, Desset C, Ryckaert J, De Doncker P, Van Biessen L, Donnay S (2005) Characterization of the ultra wideband body area propagation channel, 2005 International Conference on Ultra-Wideband, Zurich, 5–8 SeptGoogle Scholar
  18. 18.
    Fort A, Ryckaert J, Desset C, De Doncker P, Wambacq P, Van Biessen L (2006) Ultra-wideband channel model for communication around the human body. IEEE JSAC 24(4):927–933, AprilGoogle Scholar
  19. 19.
    Ryckaert J, De Doncker P, Meys R, de Le Hoye A, Donnay S (2004) Channel model for wireless communication around human body. Electron Lett 40(9):543–544CrossRefGoogle Scholar
  20. 20.
    Hall PS, Hao Y, Nechayev YI, Constantinou C, Parini C, Kamarudin MR, Salim TZ, Hee DTM, Dubrovka R, Owadally AS, Song W, Serra A, Nepa P, Gallo M, Bozzetti M (2007) Antennas and propagation for on-body communication systems. IEEE AP Mag 49(3):41–58Google Scholar
  21. 21.
    Hall PS, Hao Y (eds) (2006) Antennas and propagation for body-centric wireless communications. Artech House, London, p 314Google Scholar
  22. 22.
    Cotton SL, Scanlon WG (2006) A statistical analysis of indoor multipath fading for a narrowband wireless body area network. Personal Indoor and Mobile Radio Communications, IEEEGoogle Scholar
  23. 23.
    Cotton SL, Scanlon WG (2007) A higher order statistics for lognormal small-scale fading in mobile radio channels. IEEE Antenn Wireless Propag Lett 6:540–543CrossRefGoogle Scholar
  24. 24.
    Roblin C, D'Errico R, Gorce JM, Laheurte JM, Ouvry L (2009) Propagation channel models for BANs: an overview, COST 2100, 16-18/02/2009, Braunschweig, GermanyGoogle Scholar
  25. 25.
    Ghannoum H, Bories S, D'Errico R (2006) Small-size UWB planar antenna and its behaviour in WBAN/WPAN applications. IEE Seminar on Ultra Wideband Systems, Technologies and Applications, London, Apr. 20Google Scholar
  26. 26.
    ICNIRP Guidelines (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74(4):494–522Google Scholar

Copyright information

© Institut Télécom and Springer-Verlag 2010

Authors and Affiliations

  • Christophe Roblin
    • 1
    Email author
  • Jean-Marc Laheurte
    • 2
  • Raffaele D’Errico
    • 3
  • Azeddine Gati
    • 4
  • David Lautru
    • 5
  • Thierry Alvès
    • 2
  • Hanae Terchoune
    • 4
  • Farid Bouttout
    • 5
  1. 1.ENSTA Paris-TechParis cedex 15France
  2. 2.ESYCOM, Université Paris-Est Marne-La-ValléeMarne La ValléeFrance
  3. 3.CEA-LetiGrenoble cedex 9France
  4. 4.Orange Lab.Issy les MoulineauxFrance
  5. 5.UPMC, Université Paris 06, UR2, L2E, BC 252ParisFrance

Personalised recommendations