MUQAMI+: a scalable and locally distributed key management scheme for clustered sensor networks

  • Muhammad Khaliq-ur-Rahman Raazi Syed
  • Heejo Lee
  • Sungyoung LeeEmail author
  • Young-Koo Lee


Wireless sensor networks (WSN) are susceptible to node capture and many network levels attacks. In order to provide protection against such threats, WSNs require lightweight and scalable key management schemes because the nodes are resource-constrained and high in number. Also, the effect of node compromise should be minimized and node capture should not hamper the normal working of a network. In this paper, we present an exclusion basis system-based key management scheme called MUQAMI+ for large-scale clustered sensor networks. We have distributed the responsibility of key management to multiple nodes within clusters, avoiding single points of failure and getting rid of costly inter-cluster communication. Our scheme is scalable and highly efficient in terms of re-keying and compromised node revocation.


Locally distributed Key management Sensor networks Key revocation Scalable key management Flexible scheme 



This research was supported by the MKE (Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center) support program supervised by the IITA (Institute of Information Technology Advancement) (IITA-2009-(C1090-0902-0002)). This work also, was supported by the Korea Science & Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. 2008-1342), and was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0076798). This work is supported by the IT R&D program of MKE/KEIT, [10032105, Development of Realistic Multiverse Game Engine Technology].


  1. 1.
    Younis O, Fahmy S (2004) Heed: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans Mob Comput 3(4):366–379. doi: 10.1109/TMC.2004.41 CrossRefGoogle Scholar
  2. 2.
    Youssef A, Agrawala A, Younis M (2005) Accurate anchor-free localization in wireless sensor networks. In: First IEEE workshop information assurance in wireless sensor networks (WSNIA ’05)Google Scholar
  3. 3.
    Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Networks 38(4):393–422CrossRefGoogle Scholar
  4. 4.
    Amin S, Siddiqui M, Hong C (2008) Detecting jamming attacks in ubiquitous sensor networks. In: IEEE sensors applications symposium 2008, pp 40–45Google Scholar
  5. 5.
    Çamtepe SA, Yener B (2007) Combinatorial design of key distribution mechanisms for wireless sensor networks. IEEE/ACM Trans Netw 15(2):346–358. doi: 10.1109/TNET.2007.892879 CrossRefGoogle Scholar
  6. 6.
    Chan H, Perrig A, Song D (2003) Random key predistribution schemes for sensor networks. In: SP ’03: proceedings of the 2003 IEEE symposium on security and privacy. IEEE Computer Society, Washington, DC, p 197Google Scholar
  7. 7.
    Dierks T, Allen C (1999) The TLS protocol version 1.0Google Scholar
  8. 8.
    Dini G, Savino IM (2006) An efficient key revocation protocol for wireless sensor networks. In: WOWMOM ’06: proceedings of the 2006 international symposium on on world of wireless, mobile and multimedia networks. IEEE Computer Society, Washington, DC, pp 450–452. doi: 10.1109/WOWMOM.2006.23 CrossRefGoogle Scholar
  9. 9.
    Du W, Deng J, Han YS, Varshney PK (2003) A pairwise key pre-distribution scheme for wireless sensor networks. In: CCS ’03: proceedings of the 10th ACM conference on computer and communications security. ACM, New York, pp 42–51. doi: 10.1145/948109.948118 CrossRefGoogle Scholar
  10. 10.
    Eltoweissy M, Heydari MH, Morales L, Sudborough IH (2004) Combinatorial optimization of group key management. J Netw Syst Manage 12(1):33–50. doi: 10.1023/ CrossRefGoogle Scholar
  11. 11.
    Eltoweissy M, Moharrum M, Mukkamala R (2006) Dynamic key management in sensor networks. IEEE Commun Mag 44(4):122–130. doi: 10.1109/MCOM.2006.1632659 CrossRefGoogle Scholar
  12. 12.
    Eschenauer L, Gligor VD (2002) A key-management scheme for distributed sensor networks. In: CCS ’02: proceedings of the 9th ACM conference on computer and communications security. ACM, New York, pp 41–47. doi: 10.1145/586110.586117 CrossRefGoogle Scholar
  13. 13.
    Ghumman K (2006) Location-aware combinatorial key management scheme for clustered sensor networks. IEEE Trans Parallel Distrib Syst 17(8):865–882. doi: 10.1109/TPDS.2006.106 (Senior Member-Mohamed F. Younis and Senior Member-Mohamed Eltoweissy)CrossRefGoogle Scholar
  14. 14.
    Gupta G, Younis M (2003) Load-balanced clustering of wireless sensor networks. In: International conference on communications (ICC ’03), pp 1848–1852Google Scholar
  15. 15.
    Intanagonwiwat C, Govindan R, Estrin D (2000) Directed diffusion: a scalable and robust communication paradigm for sensor networks. In: ACM mobile computing and networking (Mobicom’00), pp 56–67Google Scholar
  16. 16.
    Karlof C, Li Y, Polastre J (2003) Arrive: an architecture for robust routing in volatile environments. Tech. Rep. CSD-03-1233, University of California at BerkeleyGoogle Scholar
  17. 17.
    Karlof C, Sastry N, Wagner D (2004) TinySec: a link layer security architecture for wireless sensor networks. In: SenSys ’04: proceedings of the 2nd international conference on embedded networked sensor systems. ACM, New York, pp 162–175. doi: 10.1145/1031495.1031515 CrossRefGoogle Scholar
  18. 18.
    Kohl J, Neuman C (1993) The Kerberos network authentication service (v5)Google Scholar
  19. 19.
    Lamport L (1981) Password authentication with insecure communication. Commun ACM 24(11):770–772. doi: 10.1145/358790.358797 CrossRefMathSciNetGoogle Scholar
  20. 20.
    Langendoen K, Reijers N (2003) Distributed localization in wireless sensor networks: a quantitative comparison. Comput Networks 43(4):499–518zbMATHCrossRefGoogle Scholar
  21. 21.
    Li G, He J, Fu Y (2006) A hexagon-based key predistribution scheme in sensor networks. In: ICPPW ’06: proceedings of the 2006 international conference workshops on parallel processing. IEEE Computer Society, Washington, DC, pp 175–180. doi: 10.1109/ICPPW.2006.9 Google Scholar
  22. 22.
    Madden S, Szewczyk R, Franklin MJ, Culler D (2002) Supporting aggregate queries over ad-hoc wireless sensor networks. In: WMCSA ’02: proceedings of the fourth IEEE workshop on mobile computing systems and applications. IEEE Computer Society, Washington, DC, p 49CrossRefGoogle Scholar
  23. 23.
    Menezes AJ, Vanstone SA, Oorschot PCV (1996) Handbook of applied cryptography. CRC, Boca RatonGoogle Scholar
  24. 24.
    Paek KJ, Kim J, Hwang CS, Song US (2007) An energy-efficient key management protocol for large-scale wireless sensor networks. In: MUE ’07: proceedings of the 2007 international conference on multimedia and ubiquitous engineering. IEEE Computer Society, Washington, DC, pp 201–206. doi: 10.1109/MUE.2007.74 CrossRefGoogle Scholar
  25. 25.
    Seetharam D, Rhee S (2004) An efficient pseudo random number generator for low-power sensor networks. In: LCN ’04: proceedings of the 29th annual IEEE international conference on local computer networks. IEEE Computer Society, Washington, DC, pp 560–562. doi: 10.1109/LCN.2004.18 CrossRefGoogle Scholar
  26. 26.
    Shaikh R, Lee S, Khan M, Song Y (2006) LSec: lightweight security protocol for distributed wireless sensor networks. In: 11th IFIP international conference on personal wireless communications PWC’06. LNCS, vol 4217, Spain, pp 367–377Google Scholar
  27. 27.
    Tilak S, Abu-Ghazaleh N, Heinzelman W (2002) A taxonomy of wireless microsensor network models. ACM Mobile Comput Commun 6(2):1–8CrossRefGoogle Scholar
  28. 28.
    Venugopalan R, Ganesan P, Peddabachagari P, Dean A, Mueller F, Sichitiu M (2003) Encryption overhead in embedded systems and sensor network nodes: modeling and analysis. In: CASES ’03: proceedings of the 2003 international conference on compilers, architecture and synthesis for embedded systems. ACM, New York, pp 188–197. doi: 10.1145/951710.951737 Google Scholar
  29. 29.
    Xing G, Lu C, Zhang Y, Huang Q, Pless R (2005) Minimum power configuration in wireless sensor networks. In: MobiHoc ’05: proceedings of the 6th ACM international symposium on mobile ad hoc networking and computing. ACM, New York, pp 390–401. doi: 10.1145/1062689.1062738 CrossRefGoogle Scholar
  30. 30.
    Xu W, Ma K, Trappe W, Zhang Y (2006) Jamming sensor networks: attack and defense strategies. IEEE Netw 20(3):41–47. doi: 10.1109/MNET.2006.1637931 CrossRefGoogle Scholar
  31. 31.
    Zhu S, Setia S, Jajodia S (2006) LEAP+: efficient security mechanisms for large-scale distributed sensor networks. ACM Trans Sen Netw 2(4):500–528. doi: 10.1145/1218556.1218559 CrossRefGoogle Scholar

Copyright information

© Institut TELECOM and Springer-Verlag 2009

Authors and Affiliations

  • Muhammad Khaliq-ur-Rahman Raazi Syed
    • 1
  • Heejo Lee
    • 2
  • Sungyoung Lee
    • 1
    Email author
  • Young-Koo Lee
    • 1
  1. 1.Department of Computer EngineeringKyung Hee UniversitySeoulKorea
  2. 2.Divison of Computer & Communication EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations