Quality of service models for heterogeneous networks: overview and challenges

  • Hesham El-SayedEmail author
  • Abdelhamid Mellouk
  • Laurent George
  • Sherali Zeadally


The proliferation and convergence of different types of wired, wireless and mobile networks (such as WiMAX, Wireless Mesh Networks, WPANs, WLANs, etc) and cellular-based networks are crucial for the success of next-generation networks. Traditional wired/wireless networks can hardly meet the requirements of future integrated-service networks which are expected to carry multimedia traffic with various quality of service (QoS) requirements. Therefore, it is necessary to develop efficient global control mechanisms that can maintain QoS requirements to maximize network resources utilization, and minimize operational costs on all the types of wireless mobile networks. In this paper, we present an overview of QoS paradigms for heterogeneous networks and focus on those based on deterministic and probabilistic QoS.


QoS QoS routing Heterogeneous networks (wireless and wired networks) Scheduling QoS signaling Work-conserving 


  1. 1.
    Blake S, Black D, Carlson M (1998) An architecture for Differentiated Services. RFC 2475, DecemberGoogle Scholar
  2. 2.
    Jacobson V, Nichols K, Poduri K (1999) An expedited forwarding PHB. RFC 2598, JuneGoogle Scholar
  3. 3.
    Bennett J, Benson K, Charny A (2001) Delay jitter bounds and packet scale rate guarantee for Expedited Forwarding, Infocom’01, Anchorage, AprilGoogle Scholar
  4. 4.
    Charny A, Le Boudec J (2000) Delay bounds in a network with aggregate scheduling. QofIS, Proceedings of the First COST 263 International Workshop on Quality of Future Internet Services, Berlin, Oct.Google Scholar
  5. 5.
    Gerla M, Casetti C, Lee S (2001) Resource allocation and admission control styles on QoS DiffServ networks. QoS-IP 2001, Rome, ItalyGoogle Scholar
  6. 6.
    George L, Kamoun S, Minet P (2001) First come first served: some results for real-time scheduling. PDCS’01, Dallas, USA, AugustGoogle Scholar
  7. 7.
    Parekh A, Gallager R (1994) A generalized processor sharing approach to flow control in integrated services networks: the multiple node case. IEEE ACM Trans Netw 2. AprilGoogle Scholar
  8. 8.
    Georgiadis L, Guérin R, Peris V (1996) Efficient network QoS provisioning based on per node traffic shaping. IEEE ACM Trans Netw Aug.Google Scholar
  9. 9.
    Chiussi F, Sivaraman V (1998) Achieving high utilization in guaranteed services networks using early-deadline-first scheduling. IWQoS’98, Napo, USAGoogle Scholar
  10. 10.
    Sivaraman V, Chiussi F, Gerla M (2000) Traffic shaping for end-to-end delay guarantees with EDF scheduling. IWQoS’2000, Pittsburgh, JuneGoogle Scholar
  11. 11.
    Sivaraman V, Chiussi F (2000) Providing end-to-end statistical delay guarantees with Earliest Deadline First scheduling and per-hop traffic shaping. Infocom’00, Proc. IEEE 2:631–640Google Scholar
  12. 12.
    Sivaraman V, Chiussi F, Gerla M (2001) End-to-end statistical delay service under GPS and EDF scheduling: a comparison study. Infocom’2001, Anchorage, Alaska, AprilGoogle Scholar
  13. 13.
    Tindell K, Clark J (1994) Holistic schedulability analysis for distributed hard real-time systems. Euromicro J 40:117–134Google Scholar
  14. 14.
    Le Boudec J, Thiran P (1997) A note on time and space methods in network calculus. Technical Report, N. 97/224, Ecole Polytechnique Fédérale de Lausanne, Swiss, AprilGoogle Scholar
  15. 15.
    Di Natale M, Stankovic JA (1994) Dynamic end-to-end guarantees in distributed real-time systems. Proc. of Real-Time Symposium, San Juan, Puerto Rico, 7–9 DecemberGoogle Scholar
  16. 16.
    Kao B, Garcia-Molina H (1993) Deadline assignment in a distributed soft real-time system. Proc. of the 13th International Conference in Distributed Computing Systems, pp 428–437Google Scholar
  17. 17.
    Jonson J (1999) A robust adaptive metric for deadline assignment in heterogeneous distributed real-time systems. Proc. of the IEEE International Processing Symposium, San Juan, Puerto Rico, pp 678–687, 12–16 AprilGoogle Scholar
  18. 18.
    Sahoo A, Zhao W (1997) Partition-based admission control in heterogeneous networks for hard real-time connections. Proc. of the 10th International Conference on Parallel and Distributed Computing, OctoberGoogle Scholar
  19. 19.
    Garey M, Johnson D (1979) Computers and intractability: guide to the theory of NP completeness. In: Freeman W (ed) New YorkGoogle Scholar
  20. 20.
    Widyono R (1994) The design and evaluation of routing algorithms for real-time channels. Technical Report TR-94-024, University of California at Berkeley, JuneGoogle Scholar
  21. 21.
    Lee W et al (1994) Multi-criteria routing subject to resource and performance constraints. ATM Forum 94-0280, MarchGoogle Scholar
  22. 22.
    Cheng S, Nahrstedt K (1998) On finding multi-constrained paths. ICC 98, Atlanta, GeorgiaGoogle Scholar
  23. 23.
    De Neve H, Van Mieghem P (1998) A multiple quality of service routing algorithm for PNNI. IEEE ATM 98 workshop, pp 306–314, Fairfax, Virginia, MayGoogle Scholar
  24. 24.
    Juttner A, Szviatovski B, Mecs I, Rajko Z (2001) Lagrange relaxation based method for the Qos routing problem. INFOCOM 2001, Anchorage, Alaska, AprilGoogle Scholar
  25. 25.
    Kao B, Garcia-Molina H (1993) Deadline assignment in a distributed soft real-time system. Proc. of the 13th International Conference in Distributed Computing Systems, pp 428–437Google Scholar
  26. 26.
    Kao B, Garcia-Molina H (1994) Subtask deadline assignment for complex distributed soft real-time tasks. Proc. of Int. Conf. on Distributed Computing Systems, pp 172–181Google Scholar
  27. 27.
    Braden R, Clark D, Shenker S (1994) Integrated services in the Internet architecture: an overview. RFC 1633, JuneGoogle Scholar
  28. 28.
    Awduche D, Malcolm J, Agogbua J, O’Dell M, McManus J, Wang (1999) Requirements for traffic engineering over MPLS. RFC 2702, SeptemberGoogle Scholar
  29. 29.
    Le Faucheur F, Wu L, Davari S (2000) MPLS support of Differentiated Services. Internet draft, AugustGoogle Scholar
  30. 30.
    Koubâa A, Song YQ (2002) Upper bound evaluation of response time for real-time communication. LORIA Research ReportGoogle Scholar
  31. 31.
    George L, Rivierre N, Spuri M (1996) Preemptive and non-preemptive real-time uni-processor scheduling. Research Report 2966, INRIA Rocquencourt, France, SeptemberGoogle Scholar
  32. 32.
    Bennet JCR, Zhang H (1996) WF2Q: Worst-case fair queuing. Proceeding of IEEE Infocom ’96, pp 120–128, San Francisco, CA, MarchGoogle Scholar
  33. 33.
    David H, Eybey A (1990) A simulation study of fair queuing and policy enforcement. Comput Commun Rev 20(5):23–29. OctCrossRefGoogle Scholar
  34. 34.
    Golestani S (1994) A self-clocked fair queuing scheme for High speed applications. In Proceedings of IEEE Infocom’94, pp 636–646, AprilGoogle Scholar
  35. 35.
    Abuamsha O, Pekergin N (1997) Eligible start-time fair queuing: a new fair queuing policy and its analysis with a stochastic comparison approach. université de Versailles Saint-Quentin.
  36. 36.
    Goyal P, Vin HM, Cheng H (1997) Start time fair queuing: a scheduling algorithm for integrated services packet switching networks. IEEE/ACM Trans Netw 5:690–704. OctoberCrossRefGoogle Scholar
  37. 37.
    Zhang L (1990) Virtual Clock: a new traffic control algorithm for packet switching networks. In Proceedings of ACM SIGCOMM’90, pp 19–29 Philadelphia, Pennsylvania, SeptemberGoogle Scholar
  38. 38.
    Ferrari D, Verma D (1990) A scheme for real time channel establishment in wide-area networks. IEEE J Sel Areas Commun 8(3):368–379. AprilCrossRefGoogle Scholar
  39. 39.
    Verma D, Zhang H, Ferrari D (1991) Guaranteeing delay Jitter bounds in packet switching networks. In proceedings of tricomm’91, pp 35–46, Chapel Hill, North Carolina, AprilGoogle Scholar
  40. 40.
    Zhang H, Keshav H (1991) Comparison of rate-based service disciplines. In Proceedings of ACM SIGCOMM’91, pp 113–121, AugustGoogle Scholar
  41. 41.
    Zhang H, Ferrari D (1994) Rate-controlled service disciplines. J High Speed Netw 3:389–412Google Scholar
  42. 42.
    Zhang H, Ferrari D (1993) Rate controlled static-priority queuing. In proceedings of IEEE Infocom’93, pp 227–236, San Francisco, California, AprilGoogle Scholar
  43. 43.
    Marinca D, Minet P, George L (2004) Analysis of deadline assignment methods in distributed real-time systems. Computer Communications, Volume 27, Number 15, 22 SeptemberGoogle Scholar
  44. 44.
    Martin S, Minet P, George L (2005) The trajectory approach for the end-to-end response times with non-preemptive FP/EDF. In Lecture Notes in Computer Science, LNCS 3647/2005, Software Engineering Research and Applications, Springer Verlag, JuneGoogle Scholar
  45. 45.
    Martin S, Minet P, George L (2005) End-to-end response time with Fixed Priority scheduling: trajectory approach vs. holistic approach. IJCS Int J Commun Syst Wiley 18(1):1–95. FebruaryGoogle Scholar
  46. 46.
    Boukhalfa L, Minet P, George L, Midonnet S (2003) Router timeliness analysis in multihop networks. IEEE International Conference on Software Telecommunications and Computer Networks, SOFTCOM’2003, Split, Croatie, OctoberGoogle Scholar
  47. 47.
    Martin S, Minet P, George L (2004) Deterministic end-to-end guarantees for real-time applications in a DiffServ-MPLS domain. Lecture Notes in Computer Science, LCNS 3026/2004, Software Engineering Research and Applications, Springer Verlag, MayGoogle Scholar
  48. 48.
    Mellouk A, Lorenz P, Boukerche A, Lee MH (2007) Adaptive quality of service based routing algorithms in the next generation heterogeneous networks. SI in IEEE Comm Magazine, IEEE Press 45(2). FebGoogle Scholar
  49. 49.
    Garey MR, Jhonson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, San FranciscozbMATHGoogle Scholar
  50. 50.
    Kuipers FA, Van Mieghem P (2005) Conditions that impact the complexity of QoS routing. IEEE/ACM Trans Netw 13(4):717–730CrossRefGoogle Scholar
  51. 51.
    Song M, Sahni S (2006) Approximation algorithms for multiconstrained quality-of-service routing. IEEE Trans Comput 55(8):1048–1056CrossRefGoogle Scholar
  52. 52.
    Jaffe JM (1984) Algorithms for finding paths with multiple constraints. IEEE Netw 14:95–116zbMATHMathSciNetGoogle Scholar
  53. 53.
    Sahni S (2005) Data structures, algorithms, and applications in C++, 2nd edn. Silicon PressGoogle Scholar
  54. 54.
    Korkmaz T, Krunz M (2001) A randomized algorithm for finding a path subject to multiple QoS requirements. Comput Netw 36:251–268CrossRefGoogle Scholar
  55. 55.
    Quoitin B, Uhlig S (2005) Modeling the routing of an autonomous system with C-BGP. IEEE Netw 19(6):12–19CrossRefGoogle Scholar
  56. 56.
    Yanuzzi M, Masip-Bruin X, Bonaventure O (2005) Open issues in inter-domain routing: a survey. IEEE Netw 19(6):49–56CrossRefGoogle Scholar
  57. 57.
    Masip-Bruin X et al (2006) Research challenges in QoS routing. Comput Commun 29:563–581CrossRefGoogle Scholar
  58. 58.
    Kuipers FA, Korkmaz T, Krunz M, Van Mieghem P (2004) Performance evaluation of constraint-based path selection algorithms. IEEE Netw 18(5):16–22CrossRefGoogle Scholar
  59. 59.
    Sutton RS, Barto AG (1997) Reinforcement learning. MIT PressGoogle Scholar
  60. 60.
    Gelenbe E, Lent L, Xu Z (2002) Networking with cognitive packets. In Proc. ICANN 2002, Madrid, Spain, pp 27–30Google Scholar
  61. 61.
    Dorigo M, Stüzle T (2004) Ant colony optimization. MIT Press, Cambridge, MAzbMATHGoogle Scholar
  62. 62.
    Mellouk A, Hoceini S (2007) Reinforcing state-dependent n best quality of service routes in communication network. In IEEE High Performance Switching and Routing (HPSR) Workshop, Polytechnic University, USA, May 30–June 1stGoogle Scholar
  63. 63.
    Mellouk A, Hoceini S, Cheurfa M (2008) Reinforcing probabilistic selective quality of service routes in dynamic networks. Journal of Computer Communications 31(11):2706–2715CrossRefGoogle Scholar
  64. 64.
    Srinidhi SM, Thesling WH, Konangi VK (1997) An adaptive scheme for admission control in ATMnetworks. Comput Netw ISDN Syst 29(5):569–582CrossRefGoogle Scholar
  65. 65.
    Steenhaut K, Degieter K, Brissinck W, Dirkx E (1997) Scheduling and admission control policies: A case study for ATM. Compu Netw ISDN Syst 29(5):539–554CrossRefGoogle Scholar
  66. 66.
    Westberg L, Karagiannis G et al (2002) A proposal for RSVPv2, Internet draft Oct. Available at <>
  67. 67.
    Oottamakorn C, Bushmitch D (2005) Scalable QoS assurances with measurement-based admission control. IEICE Trans Commun E88–B(5). MayGoogle Scholar
  68. 68.
    Cetinkaya C, Knightly E (2000) Egress admission control. Proc. IEEE INFOCOMM 2000, vol.3, no.1, pp 1471–1480, Tel Aviv, Israel, MarchGoogle Scholar
  69. 69.
    Bianchi G, Capone A, Petrioli C (2000) Throughput analysis of end-to-end measurement-based admission control in IP. Proc. IEEE INFOCOM2000, vol.3, no.1, pp 1461–1470, Tel Aviv, Israel, MarchGoogle Scholar
  70. 70.
    Elek V, Karlsson G, Ronngren R (2000) Admission control based on end-to-end measurements. Proc. IEEE INFOCOM 2000, vol.2, no.1, pp 623–630, Tel Aviv, Israel, MarchGoogle Scholar
  71. 71.
    Kelly F, Key P, Zachary S (2000) Distributed admission control. IEEE J Sel Areas Commun 18(12):2617–2628CrossRefGoogle Scholar
  72. 72.
    Breslau L, Knightly E, Schenker S, Stoica I, Zhang H (2000) Endpoint admission control: Architectural issue and performance. ACM SIGCOMM 2000, vol.30, no.4, pp 57–69, Stockholm, Sweden, AugGoogle Scholar
  73. 73.
    Blake S, Black D, Carlson M, Davies E, Wang Z, Weiss W (1998) An architecture for differentiated services. IETF, RFC 2475, DecemberGoogle Scholar
  74. 74.
    Gerla M, Casetti C, Lee SS, Reali G (2001) Resource allocation and admission control styles in QoS DiffServ networks. Lect Notes Comput Sci 1989/2001:113–128CrossRefGoogle Scholar
  75. 75.
    Chakeres I, Belding-Royer E, Macker J (2007) Perceptive admission control for wireless network quality of service. Ad Hoc Networks 5(7):1129–1148. SeptemberCrossRefGoogle Scholar
  76. 76.
    Song W, Jiang H, Zhuang W, Shen X (2005) Resource management for QoS support in cellular/WLAN interworking. IEEE Network, pp 12–18, September/OctoberGoogle Scholar
  77. 77.
    Niyato D, Hossain E (2005) Call admission control for QoS provisioning in 4G wireless networks: Issues and approaches. IEEE Network, pp 5–11, September/OctoberGoogle Scholar
  78. 78.
    Ali Z, Sheikh W, Chong EK, Ghafoor A (2008) A scalable call admission control algorithm. IEEE/ACM Trans Netw 16(2). AprilGoogle Scholar
  79. 79.
    Ghaderi M, Boutaba R (2006) Call admission control in mobile cellular networks: a comprehensive survey: Research Articles. Wireless Communications & Mobile Computing, Volume 6, Issue 1, pp 69–93, FebruaryGoogle Scholar
  80. 80.
    Qaimkhani I, Hossain E (2008) Efficient silence suppression and call admission control through contention-free medium access for VoIP in WiFi networks. IEEE Commun Mag 90–99. JanuaryGoogle Scholar
  81. 81.
    Bazzi A et al (2006) WLAN call admission control strategies for voice traffic over integrated 3G/WLAN networks. Consumer Communication and Networking Conf.’06 2:1234–1238. JanuaryCrossRefGoogle Scholar
  82. 82.
    Deniz D, Mohamed N (2003) Performance of CAC strategies for multimedia traffic in wireless networks. IEEE J Sel Areas Commun 21(10):1557–1565. DecemberCrossRefGoogle Scholar
  83. 83.
    Leong C, Zhuang W, Cheng Y, Wang L (2004) Call admission control for integrated On/Off voice and best-effort data services in mobile cellular communications. IEEE Trans Commun 52(5). MayGoogle Scholar
  84. 84.
    Li B, Li L, Sivalingam KM, Cao X (2004) Call admission control for voice/data integrated cellular networks: performance analysis and comparative study. IEEE J Sel Areas Commun 22(4). MayGoogle Scholar
  85. 85.
    Wu S, Wong KYM, Li B (2002) A dynamic call admission policy with precision QoS guarantee using stochastic control for mobile wireless networks. IEEE/ACM Trans Netw 10:257–271. Apr.CrossRefGoogle Scholar
  86. 86.
    Xiao Y, Chen CLP, Wang B (2002) Bandwidth degradation QoS provisioning for adaptive multimedia in wireless/mobile networks. Elsevier J Computer Communication 25:1153–1161Google Scholar
  87. 87.
    Huang L, Kumar S, Kuo CCJ (2004) Adaptive resource allocation for multimedia QoS management in wireless networks. IEEE Trans Veh Technol 53(2). MarchGoogle Scholar
  88. 88.
    Paschos G, Politis I, Kotsopoulos S (2005) A quality of service negotiation-based admission control scheme for WCDMA mobile wireless multiclass services. IEEE Trans Veh Technol 54(5). SeptemberGoogle Scholar
  89. 89.
    Wang J, Zeng QA, Agrawal DP (2003) Performance analysis of a pre-emptive and priority reservation handoff scheme for integrated service-based wireless mobile networks. IEEE Transaction Mob Comp 2. Jan./MarGoogle Scholar
  90. 90.
    Pedersen KI, Mogensen PE (2002) Directional power based admission control for WCDMA systems using beam forming antenna arrays system. IEEE Trans Veh Technol 51(6). NovGoogle Scholar
  91. 91.
    Gunnarsson F, Geijer-Lundin E, Bark G, Wiberg N (2002) Uplink admission control in WCDMA based on relative load estimates. In Proc. IEEE International Conference on Communications 5(28):3091–3095. April/MayGoogle Scholar
  92. 92.
    Solana H, Bardaji AV, Palacio FC (2003) Capacity analysis and performance evaluation of call admission control for multimedia packet transmission in UMTS WCDMA system. Proc. IEEE WCNC 2003 3:1550–1555. Mar.CrossRefGoogle Scholar
  93. 93.
    Capone A, Redana S (2001) Call admission control techniques for UMTS. In Proc IEEE VTC 2001 Fall 2:925–929. Oct.Google Scholar
  94. 94.
    Ying W, Jingmei Z, Weidong W, Ping Z (2002) Call admission control in hierarchical cell structure. In Proc IEEE VTC Spring 2002 4:1955–1959. MayGoogle Scholar
  95. 95.
    Wu P-Y, Tseng Y-C, Lee H (2005) Design of QoS and admission control for VoIP services over IEEE 802.11e WLANs. National Computer Symposium, TaiwanGoogle Scholar
  96. 96.
    Gao D, Cai J, Ngan K (2005) Admission control in IEEE 802.11e Wireless LANs. IEEE Network. July/AugustGoogle Scholar
  97. 97.
    Todinca D, Graja H, Perry P, Murphy J (2004) Novel admission control algorithm for GPRS/EGPRS based on fuzzy logic. Fifth IEEE International Conference on 3G Mobile Communication Technologies (3G 2004), pp 342–346, IEEE Press, ISBN 0 86341 388 9, London, UK, OctoberGoogle Scholar
  98. 98.
    Alam M, Prasad R, Farserotu JR (2001) Quality of service among IP-based heterogeneous networks. IEEE Pers Comm Mag 8(6):18–24CrossRefGoogle Scholar
  99. 99.
    Barzilai TP, Kandlur DD, Mehra A, Saha D (1998) Design and implementation of an RSVP-based quality of service architecture for an integrated services Internet. IEEE J Sel Areas Commun 16:397–413CrossRefGoogle Scholar
  100. 100.
    Song JY, Lee HJ, Lee SH, Lee SW, Cho DH (2007) Hybrid coupling scheme for UMTS and wireless LAN interworking. AEU Int J Electron Commun 61(5):329–336. MayCrossRefGoogle Scholar
  101. 101.
    Ruggeri G, Iera A, Polito S (2005) 802.11-Based Wireless-LAN and UMTS interworking: requirements, proposed solutions and open issues. Comput Netw 47(2):151–166. FebruaryCrossRefGoogle Scholar
  102. 102.
    Brunner M, Greco R (2002) Towards RSVP Version 2, Internet draft, Oct. [Online]. Available from: <>
  103. 103.
    Song W, Zhuang W, Cheng Y (2007) Load balancing for cellular/WLAN integrated networks. IEEE Netw 21(1):27–33. Jan.–Feb.CrossRefGoogle Scholar
  104. 104.
    Shore M (2003) The NSIS Transport Layer Protocol (NTLP), Internet draft, May [Online]. Available from: <>
  105. 105.
    Lo S-C, Lee G, Chen W-T, Liuand J-C (2004) Architecture for mobility and QoS support in all-IP wireless networks. IEEE J Sel Areas Commun 22(4):691–705CrossRefGoogle Scholar
  106. 106.
    Luo J, Mukerjee R, Dillinger M, Mohyeldin E, Schulz E (2003) Investigation of radio resource scheduling in WLANs coupled with 3G cellular network. IEEE Commun Mag 41(6):108–115CrossRefGoogle Scholar
  107. 107.
    Xiao Y, Leung KK, Pan Y, Du X (2005) Architecture, mobility management, and quality of service for integrated 3G and WLAN networks. Journal of Wireless Communications and Mobile Computing 5(7):805–823. Oct.CrossRefGoogle Scholar
  108. 108.
    Siddiqui F, Zeadally S, Yaprak E (2005) Design architectures for 3G and IEEE 802.11 WLAN integration. Lect Notes Comput Sci 3421:1047–1054CrossRefGoogle Scholar
  109. 109.
    Passas N, Salkintzis AK (2005) Special issue: WLAN/3G integration for next-generation heterogeneous mobile data networks. Wireless Comm Mobile Comput 5(6):599–601CrossRefGoogle Scholar
  110. 110.
    Zarai F, Boudriga N, Obaidat MS (2006) WLAN–UMTS integration: architecture, seamless handoff, and simulation analysis. Simulation 82(6):413–424. JuneCrossRefGoogle Scholar
  111. 111.
    Mohanty S (2006) A new architecture for 3G and WLAN integration and inter-system handover management. Wireless Network 12(6):733–745. DecemberCrossRefGoogle Scholar
  112. 112.
    (2006) Specifications: cdma2000—WLAN Interworking. TTAT.3G-S.R0087-A v1.0Google Scholar
  113. 113.
    Fodor G, Eriksson A, Tuoriniemi A (2003) Providing quality of service in always best connected networks. IEEE Commun Mag 41(7):154–163CrossRefGoogle Scholar
  114. 114.
    Dixit S, Guo Y, Antoniou Z (2001) Resource management and quality of service in third generation wireless networks. IEEE Commun Mag 39(2):125–133CrossRefGoogle Scholar
  115. 115.
    3GPP (2003) Quality of Service (QoS) concept and architecture. 3GPP TS 23.107 V5.12.0Google Scholar
  116. 116.
    Grilo A, Nunes M, Sergio G, Ciulli N (2003) Integration of IP mobility and QoS for heterogeneous wireless access in MOICANE. Proceedings of the IEEE Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’03) 1:470–475Google Scholar
  117. 117.
    Manner J, Burness L, Hepworth E, Lopez A, Mitjana E (2002) Provision of QoS in heterogeneous wireless IP access networks. Proceedings of the IEEE Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’02) 2:530–534Google Scholar
  118. 118.
    Marques V, Aguiar RL, Garcia C, Moreno JI, Beaujean C, Melin E, Liebsch M (2003) An IP-based QoS architecture for 4G operator scenarios. IEEE Wirel Commun 10(3):54–62CrossRefGoogle Scholar
  119. 119.
    Moon B, Aghvami H (2001) RSVP extensions for real-time services in wireless mobile networks. IEEE Commun Mag 39(12):52–59CrossRefGoogle Scholar
  120. 120.
    Moon B, Aghvami H (2003) DiffServ extensions for QoS provisioning in IP mobility environments. IEEE Wirel Commun 10(5):38–44CrossRefGoogle Scholar
  121. 121.
    Lin YB, Pang AC, Huang YR, Chlamtac I (2002) An All-IP approach for UMTS third-generation mobile networks. IEEE Network, pp 8–19, Set.Google Scholar
  122. 122.
    Zhang Q et al (2003) Efficient mobility management for vertical handoff between WWAN and WLAN. IEEE Commun Mag 41(11):102–108. Nov.CrossRefGoogle Scholar
  123. 123.
    Zhuang W, Gan Y-S, Loh K-J, Chua K-C (2003) Policy-based QoS-management architecture in an integrated UMTS and WLAN environment. IEEE Commun Mag 41(11):118–125CrossRefGoogle Scholar
  124. 124.
    Klein T, Han S-J (2004) Assignment strategies for mobile data users in hierarchical overlay networks: performance of optimal and adaptive strategies. IEEE JSAC 22(5):849–861. JuneGoogle Scholar
  125. 125.
    Thajchayapong S, Peha JM (2003) Mobility patterns in microcellular wireless networks. Proc. IEEE WCNC 3:1963–1968. Mar.Google Scholar
  126. 126.
    Oh SM, Kim J, Hwang Y, Kwon H, Park A (2006) End-to-End QoS guaranteed service in WLAN and 3GPP interworking network. Lect Notes Comput Sci 4238Google Scholar
  127. 127.
    Wang X, Min G, Mellor JE, Al-Begain K, Guan L (2005) An adaptive QoS framework for integrated cellular and WLAN networks. Computer Networks Computer Networks: The International Journal of Computer and Telecommunications Networking 47(2)Google Scholar
  128. 128.
    Kumar N, Singh R, Verma S (2007) Scalable E2E framework for heterogeneous (wired-cum-wireless) networks. IJCSNS 7(8):244–252. AugustGoogle Scholar
  129. 129.
    Zhu H, Li M, Chlamtac I, Prabhakaran B (2004) Survey of quality of service in IEEE 802.11 networks. IEEE Wireless Comm Mag, Special Issue on Mobility and Resource Management 11(4):6–14Google Scholar
  130. 130.
    Valaee S, Li B (2002) Distributed call admission control in wireless ad hoc networks. In Proceedings of IEEE VTC, VancouverGoogle Scholar
  131. 131.
    Shah SH, Chen K, Nahrstedt K (2003) Dynamic bandwidth management for single-hop ad hoc wireless networks. In Proceedings of PerCom’03, Fort-Worth, TexasGoogle Scholar
  132. 132.
    Banchs A, P’erez X (2002) Providing throughput guarantees in IEEE 802.11 wireless LAN. In Proceedings of IEEEWCNC 1:130–138Google Scholar
  133. 133.
    Zhu R, Liu X (2007) Effective CAC Scheme in IEEE 802.11e Wireless LANs. International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless CommunicationsGoogle Scholar
  134. 134.
    Zhang L, Zeadally S (2006) Enabling end-to-end QoS over hybrid wired-wireless networks. Wirel Pers Commun 38:167–185CrossRefGoogle Scholar
  135. 135.
    Chen X, Zhai H, Tian X, Fang Y (2006) Supporting QoS in IEEE 802.11e Wireless LANs. IEEE Trans Wirel Commun 5(8):2217–2227. AugustCrossRefGoogle Scholar
  136. 136.
    Blake S, Black D, Carlson M, Davies E, Wang Z, Weiss W (1998) An architecture for differentiated service. RFC 2475Google Scholar
  137. 137.
    Park S, Kim K, Kim DC, Choi S, Hong S (2003) Collaborative QoS architecture between DiffServ and 802.11e Wireless LAN. In Proc. IEEE VTC’03—Spring, Jeju, KoreaGoogle Scholar
  138. 138.
    Shankar S, Choi S (2002) QoS signaling for parameterized traffic in IEEE 802.11e Wireless LANS. Lect Notes Comput Sci 2402:67–84. AugustCrossRefGoogle Scholar
  139. 139.
    Garc’ıa-Mac’ıas JA, Rousseau F, Berger-Sabbatel G, Toumi L, Duda A (2003) Quality of service and mobility for the wireless internet. Wirel Netw 9:341–352CrossRefGoogle Scholar
  140. 140.
    Li M, Zhu H, Chlamtac I, Prabhakaran B (2006) End-to-end QoS framework for heterogeneous wired-cum-wireless networks. Published © Springer, LLC 2006. Wirel Netw 439–450Google Scholar
  141. 141.
    Moon B, Aghvami AH (2004) Quality of service mechanisms in All-IP wireless access networks. IEEE J Sel Areas Commun 22(5):873–888CrossRefGoogle Scholar
  142. 142.
    Talukdar A, Badrinath BR, Acharya A (2001) MRSVP: A reservation protocol for an Integrated services packet networks with mobile hosts. Wirel Netw 7–1:5–19CrossRefGoogle Scholar
  143. 143.
    Wallenius E, Hämäläinen T, Nihtilä T, Joutsensalo J (2004) Providing QoS in 3G–WLAN Environment with RSVP and DiffServ. 1st International Conference on E-business and Telecommunication Networks (ICETE 2004), Portugal, AugustGoogle Scholar
  144. 144.
    Wallenius E, Hämäläinen T, Nihtilä T, Puttonen J, Joutsensalo J (2006) Simulation study on 3G and WLAN inter-working. IEICE Trans Commun E89–B(2):446–459. FebruaryCrossRefGoogle Scholar
  145. 145.
    Cai L, Shen X, Mark J, Pan J (2006) QoS support in wireless/wired networks using the TCP-Friendly AIMD protocol. IEEE Trans Wirel Commun 5(2):469–480. FebruaryCrossRefGoogle Scholar
  146. 146.
    Tan W, Zakhor A (1999) Real-time Internet video using error resilient scalable compression and TCP-friendly transport protocol. IEEE Trans Multimedia 1(2):172–186CrossRefGoogle Scholar
  147. 147.
    Cai L, Shen X, Pan J, Mark JW (2005) Performance analysis of TCP friendly AIMD algorithms for multimedia applications. IEEE Trans Multimedia 7(2):339–355. Apr.CrossRefGoogle Scholar
  148. 148.
    Floyd S, Kohler E (2006) Profile for DCCP congestion control ID2: TCP-like congestion control. RFC 4341, MarchGoogle Scholar
  149. 149.
    Karandikar S, Kalyanaraman S, Bagal P, Packer B (2000) TCP rate control. ACM Comput Commun Rev 30(1):45–58CrossRefGoogle Scholar
  150. 150.
    Kalampoukas L, Varma A, Ramakrishnan KK (2002) Explicit window adaptation: a method to enhance TCP performance. IEEE/ACM Trans Netw 10(3):338–350CrossRefGoogle Scholar
  151. 151.
    Chan MC, Ramjee R (2004) Improving TCP/IP performance over third generation wireless networks. In Proc. IEEE INFOCOM’04Google Scholar
  152. 152.
    Dunaytsev R, Koucheryavy Y, Harju J (2006) The PFTK-model revised. Comput Commun 29:2671–2679CrossRefGoogle Scholar
  153. 153.
    Lahanas A, Tsaoussidis V (2006) Experimenting with tau-AIMD over wireless asynchronous networks. Comput Commun 29:2702–2709CrossRefGoogle Scholar
  154. 154.
    Maniatis S, Nikolouzou EG, Wenieris LS (2004) End-to-End QoS specification issues in the converged All-IP wired and wireless environment. IEEE Communications, JuneGoogle Scholar
  155. 155.
    Delgrorri L, Berger L (1995) Internet Stream Protocol Version 2 (STZ), Protocol Specification—Version STZ. RFC 1819, Aug.Google Scholar
  156. 156.
    Braden R et al (1997) Resource Reservation Protocol (RSVP)—Version 1 Functional Specification. RFC 2205, Sept.Google Scholar
  157. 157.
    Pan P, Schulzrinne H (1999) YESSIR: a simple reservation mechanism for the internet. Comput Commun Rev 29(2). Apr.Google Scholar
  158. 158.
    Feher G, Nemeth K, Malion M (1999) Boomerang: a simple protocol for resource reservation in IP networks. IEEE Real-Time Tech. and Apps. Symposium, Vancouver, Canada, JuneGoogle Scholar
  159. 159.
    Pan P, Hahne E, Schulzrinne H (2000) BGRP: a tree-based aggregation protocol for interdomain reservations. J Commun Netw 2(2):157–67. JuneGoogle Scholar
  160. 160.
    Manner J, Karagiannis G, McDonald A (2008) NSLP for quality-of-service signaling. Draft-ietf-nsis-qos-nslp-16.txt, FebruaryGoogle Scholar
  161. 161.
    Manner J, Fu X (2005) Analysis of existing quality-of-service signaling protocols. RFC 4094, MayGoogle Scholar
  162. 162.
    Lee S, Gahng-Seop A, Zhang X, Campbell A (2000) INSIGNIA: An IP-Based quality of service framework for mobile ad hoc networks. J Parallel Distrib Comput (Academic), Special issue on Wireless and Mobile Computing and Communications 60(4):374–406. AprilGoogle Scholar
  163. 163.
    Bernet Y (2000) Format of the RSVP DCLASS Object. RFC 2996, NovemberGoogle Scholar
  164. 164.
    Awduche D, Berger L, Gan D, Li T, Srinivasan V, Swallow G (2001) RSVP-TE: Extensions to RSVP for LSP Tunnels. RFC 3209, DecemberGoogle Scholar
  165. 165.
    Berger L (2003) Generalized Multi-Protocol Label Switching (GMPLS) signaling resource reservation protocol-traffic engineering (RSVP-TE) extensions. RFC 3473, JanuaryGoogle Scholar
  166. 166.
    Brunner M, Hancock R, Hepworth E, Kappler C, Tschofenig H (2004) Requirements for signaling protocols. RFC 3726, AprilGoogle Scholar
  167. 167.
    Hancock R, Karagiannis G, Loughney J, Van den Bosch S (2005) Next steps in signaling (NSIS): framework. RFC 4080, JuneGoogle Scholar
  168. 168.
    Schulzrinne H, Hancock R (2008) GIST: general internet signalling transport. Draft-ietf-nsis-ntlp-15 (work in progress), FebruaryGoogle Scholar
  169. 169.
    Bernet Y, Elfassy N, Gai S, Dutt D (2002) RSVP Proxy. Work in Progress, MarchGoogle Scholar
  170. 170.
    3GPP TS 23.207 V5.6.0 (2002) End-to-end Quality of Service (QoS) concept and architecture. Release 5, DecemberGoogle Scholar
  171. 171.
    Fu X, Tschofenig H, Hogrefe D (2006) Beyond QoS signaling: a new generic IP signaling framework. Computer Networks: The International Journal of Computer and Telecommunications Networking archive 50(17):3416–3433. DecemberzbMATHGoogle Scholar
  172. 172.
    IETF Next Steps In Signaling (NSIS) Working Group [Online]. Available from: <>
  173. 173.
    Shen C, Seah W et al (2002) Mobility extensions to RSVP in an RSVP-Mobile IPv6 Framework, Internet draft, JulyGoogle Scholar
  174. 174.
    Manner J, Raatikainen K (2003) Localized QoS management for multimedia applications in wireless access networks. In Proc. IASTED IMSA 2003, JanuaryGoogle Scholar
  175. 175.
    Thomas M (2002) Analysis of mobile IP and RSVP interactions. Internet draft, Oct.Google Scholar
  176. 176.
    Braden B, Lindell B (2002) A two-level architecture for internet. Signaling. Internet draft, work in progress, Nov.Google Scholar
  177. 177.
    Knightly E, Shroff NB (1999) Admission control for statistical QoS. IEEE Netw 13(2):20–29CrossRefGoogle Scholar

Copyright information

© Institut TELECOM and Springer-Verlag 2008

Authors and Affiliations

  • Hesham El-Sayed
    • 1
    Email author
  • Abdelhamid Mellouk
    • 2
  • Laurent George
    • 3
  • Sherali Zeadally
    • 4
  1. 1.College of Information TechnologyUnited Arab Emirates UniversityAl AinUnited Arab Emirates
  2. 2.LISSI LaboratoryUniversity of Paris 12-Val de MarneParisFrance
  3. 3.ECE, LACSCUniversity of Paris 12ParisFrance
  4. 4.Network Systems Laboratory, Department of Computer Science and Information TechnologyUniversity of the District of ColumbiaWashingtonUSA

Personalised recommendations