International Journal of Automotive Technology

, Volume 20, Issue 6, pp 1183–1193 | Cite as

Effect of Anisotropic Plasticity on the Prediction of Formability of E-Form Magnesium Alloy Sheet

  • Yongheon Lee
  • Seungyoon Jung
  • Hansung Baek
  • Jinwoo Lee
  • Moon-Seok Choi
  • Myoung-Gyu LeeEmail author


In this paper, the formability of E-FORM magnesium alloy sheet (as one of recent alloys for automotive magnesium sheets) is analyzed based on the comparison between the results of actual magnesium (Mg) roof forming and those of finite element (FE) simulations. The FE model considers anisotropic mechanical properties and forming limit diagram (FLD) of the investigated magnesium alloy sheet. Through the coupled experimental and numerical procedure, the dominating factors for improving the accuracy of the numerical simulations are further studied. A commercial finite element analysis program, AUTOFORM®, is used for the simulations, in which identified mechanical properties and forming limit criteria are implemented as functions of temperature and strain rate. The improvement in the prediction of formability during the warm forming of the E-FORM magnesium alloy sheet can be obtained by considering a modified hardening law at large strain region, sheet anisotropy, and the properly measured forming limit curve.

Key Words

Mg alloy Finite element analysis Warm forming Anisotropy Hardening Formability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by Research Resettlement Fund for the new faculty of Seoul National University (Grant No. 0668-20180066). MGL and YHL also appreciate the support from National Research Foundation of Korea (NRF2012R1A5A1051500).


  1. Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proc. Royal Society A 193, 1033, 281–297.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Hwang, J. K. and Kang, D. M. (2006). FE analysis on the press forging of AZ31 magnesium alloy. Trans. Korean Society of Automotive Engineers 14, 6, 86–91.Google Scholar
  3. Kim, H. Y., Choi, S. C., Lee, H. S., Kim, H. J. and Lee, K. T. (2007). Experiments for forming limit diagram and springback characteristics of AZ31B magnesium alloy sheet at elevated temperature. Trans. Material Processing 16, 5, 364–369.CrossRefGoogle Scholar
  4. Kim, J. H., Lee, G. A. and Lee, M. G (2015). Determination of dynamic strain hardening parameters using the virtual fields method. Int. J. Automotive Technology 16, 1, 145–151.CrossRefGoogle Scholar
  5. Kulekci, M. K. (2008). Magnesium and its alloys applications in automotive industry. Int. J. Advanced Manufacturing Technology 39, 9-10, 851–865.CrossRefGoogle Scholar
  6. Lee, J., Kim, S.-J., Lee, Y.-S., Lee, J.- Y, Kim, D. and Lee, M.-G (2017). Distortional hardening concept for modeling anisotropic/asymmetric plastic behavior of AZ31B magnesium alloy sheets. Int. J. Plasticity, 94, 74–97.CrossRefGoogle Scholar
  7. Lee, M. G and Kim, H. J. (2011). Experimental and analytical evaluation of forming characteristics for AZ31B magnesium alloy sheet. Trans. Material Processing 20, 2, 146–153.CrossRefGoogle Scholar
  8. Lee, M. G., Kim, J. H., Kim, D., Seo, O. S., Nguyen, N. T. and Kim, H. Y (2013). Anisotropic hardening of sheet metals at elevated temperature: tension-compressions test development and validation. Experimental Mechanics 53, 6, 1039–1055.CrossRefGoogle Scholar
  9. Lee, M. G., Kim, S. J., Wagoner, R. H., Chung, K. and Kim, H. Y (2009). Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets: Application to sheet springback. Int. J. Plasticity 25, 1, 70–104.CrossRefzbMATHGoogle Scholar
  10. Lee, M. H., Kim, K. K., Kim, H. Y and Oh, S. I. (2008b). Evaluation of the formability of warm forming simulation of magnesium alloy sheet using FLD. Trans. Material Processing 17, 7, 501–506.CrossRefGoogle Scholar
  11. Lee, M.- G, Wagoner, R. H., Lee, J. K., Chung, K. and Kim, H. Y. (2008a). Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets. Int. J. Plasticity 24, 4, 545–582.CrossRefzbMATHGoogle Scholar
  12. Lee, Y. and Choi, I. (2017). Development of Mg roof mass production technology. Fall Conf. Proc, Korean Society of Automotive Engineers, 1091.Google Scholar
  13. Park, D. H., Yun, J. J., Tak, Y H. and Lee, C. W. (2015). Development of automotive dash panel parts using warm drawing of magnesium alloy AZ31B. Trans. Material Processing 24, 4, 248–255.CrossRefGoogle Scholar
  14. Park, J. G, Kim, Y S., Kuwabara, T. and You, B. S. (2005). Plastic deformation characteristic of AZ31 magnesium alloy sheet. Trans. Material Processing 14, 6, 520–526.CrossRefGoogle Scholar
  15. Seo, O. S., Lee, C. A., Park, C. S., Kim, H. J. and Lee, K. T. (2016). Non-isothermal stamping analysis of automotive seat cushion panel using Mg ally sheet. Trans. Korean Society of Automotive Engineers 24, 5, 605–611.CrossRefGoogle Scholar
  16. Woo, Y Y, Han, S. W, Oh, I. Y. and Moon, Y. H. (2019). Shape defects in the flexible roll forming of automotive parts. Int. J. Automotive Technology 20, 2, 227–236.CrossRefGoogle Scholar
  17. Yoon, T. W, Kim, R. H., Lee, M. Y and Kim, R. H. (2013). Optimization of forming condition and development of forming process with Mg car body. Spring Conf. Proc, Korean Society of Automotive Engineers, 1689–1693.Google Scholar

Copyright information

© KSAE/ 111-11 2019

Authors and Affiliations

  • Yongheon Lee
    • 1
  • Seungyoon Jung
    • 2
  • Hansung Baek
    • 2
  • Jinwoo Lee
    • 3
  • Moon-Seok Choi
    • 4
  • Myoung-Gyu Lee
    • 5
    Email author
  1. 1.Advanced Technology Strategy Team, Ssangyong Motor Co.GyeonggiKorea
  2. 2.Q&C TECH, #A-823SeoulKorea
  3. 3.Materials Deformation DepartmentKorea Institute of Materials ScienceGyeongnamKorea
  4. 4.Innovative Engineering Team, Eum CreativeBusanKorea
  5. 5.Department of Materials Science and Engineering & RIAMSeoul National UniversitySeoulKorea

Personalised recommendations