Advertisement

International Journal of Automotive Technology

, Volume 20, Issue 6, pp 1113–1121 | Cite as

Improvement of Fuel Cell Durability Performance by Avoiding High Voltage

  • Seungki YangEmail author
  • Sungbum Choi
  • Youngmin Kim
  • Jongjin Yoon
  • SeJoon Im
  • Hyunsuk Choo
Article
  • 12 Downloads

Abstract

In order to increase the durability of fuel cell stack, various operating technologies such as voltage cut-off and lean air operation was verified. With an application of upper voltage cut-off, cell performance loss was effectively diminished, which suggests that a formation of surface oxide layer on Pt was suppressed resulting in less irreversible catalyst deterioration such as Pt dissolution. In addition, it was found that voltage sweeping to lower reductive potential with a lean air supply was beneficial in preventing a power loss. With a simulated vehicle driving mode, it was confirmed that performance durability was 3 times improved with an application of both voltage cut-off and lean air supply which might be ascribed to the maintaining the electrochemical acive area of Pt catalyst. The suggested operating conditions based on Pt degradation mechanism will contribute the durability enhancement of fuel cell stack for FCEVs.

Key Words

Fuel cell Voltage cut-off Lean air operation Durability Performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arisetty, S., Liu, Y., Gu, W. and Mathias, M. (2015). Modeling platinum oxide growth of PEMFC cathode catalysts. ECS Trans. 69, 17, 273–289.CrossRefGoogle Scholar
  2. Borup, R. L., Mukundan, R., Fairwether, J. D., Spernjak, D., Langlois, D. A., Davey, J. R., More, K. L. and Artyushkova, K. (2013). PEM fuel cell layer structure degradation during carbon corrosion. ECS Trans. 58, 1, 945–952.CrossRefGoogle Scholar
  3. Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, R., Wood, D., Zeleny, P., More, K., Stroh, K., Zawodzinshi, T., Boncella, J., McGrath, J. E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Kasuda, K., Kimijima, K. and Iwashita N. (2007). Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews 107, 10, 3904–3951.CrossRefGoogle Scholar
  4. Casalongue, H. S., Kaya, S., Viswanathan, V., Miller, D. J., Friebel, D., Hansen, H. A., Norskov, J. K., Nilsson, A. and Ogasawara, H. (2013). Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nature Communications, 4, 2817–2822.CrossRefGoogle Scholar
  5. Choo, H.-S., Kinumoto, T., Jeong, S.-K., Iriyama, Y., Abe, T. and Ogumi, Z. (2007). Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution. J. Electrochemical Society 154, 10, B1017–1023.CrossRefGoogle Scholar
  6. Choo, H.-S., Kinumoto, T., Nose, M., Miyazaki, K., Abe, T. and Ogumi, Z. (2008). Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution. J. Power Sources 185, 2, 740–746.CrossRefGoogle Scholar
  7. Ferreira, P. J., Ia O’, G. J., Shao-Horn, Y, Morgan, D., Makharia, R., Kocha, S. and Gasteiger, H. A. (2005). Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells: A mechanistic investigation. J. Electrochemical Society 152, 11}, A2256–2271.CrossRefGoogle Scholar
  8. Inaba, M., Kinumoto, T., Kiriake, M., Umebayashi, R., Tasaka, A. and Ogumi, Z. (2006). Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochimica Acta 51, 26, 5746–5753.CrossRefGoogle Scholar
  9. Jomori, S., Komatsubara, K., Nonoyama, N., Kato, M. and Yoshida, T. (2013). Experimental study of the activity change due to operation history in PEMFC. ECS Trans. 58, 1, 1457–1469.CrossRefGoogle Scholar
  10. Kinumoto, T., Takai, K., Iriyama, Y., Abe, T., Inaba, M. and Ogumi, Z. (2006). Stability of Pt-catalyzed highly oriented pyrolytic graphite against hydrogen peroxide in acid solution. J. Electrochemical Society 153, 1, A58–63.CrossRefGoogle Scholar
  11. Ohma, A., Shinohara, K., Iiyama, A., Yoshida, T. and Daimaru, A. (2011). Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst, MEA WG. ECS Trans. 41, 1, 775–784.CrossRefGoogle Scholar
  12. Park, Y.-C., Kakinuma, K., Uchida, M., Uchida, H. and Watanabe, M. (2014). Deleterious effects of interim cyclic voltammetry on Pt/carbon black catalyst degradation during start-up/shutdown cycling evalution. Electrochimica Acta, 123, 84–92.CrossRefGoogle Scholar
  13. Qi, Z., Tang, H., Guo, Q. and Du, B. (2006). Investigation on “saw-tooth” behavior of PEM fuel cell performance during shutdown and restart cycles. J. Power Sources 161, 2, 864–871.CrossRefGoogle Scholar
  14. tStariha, S., Macauley, N., Sneed, B. T., Langlois, D., More, K. L., Mukundan, R. and Borup, R. L. (2018). Recent advances in catalyst accelerated stress tests for polymer electrolyte membrane fuel cells. J. Electrochemical Society 165, 7, F492–501.CrossRefGoogle Scholar
  15. Tang, H., Qi, Z., Ramani, M. and Elter, J. F. (2006). PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J. Power Sources 158, 2, 1306–1312.CrossRefGoogle Scholar
  16. Topalov, A. A., Cherevko, S., Zeradjanin, A. R., Meier, J. C., Katsounaros, I. and Mayrhofer, K. J. J. (2014). Toward a comprehensive understanding of platinum dissolution in acidic media. Chemical Science 5, 2, 631–638.CrossRefGoogle Scholar
  17. Xie, J., Wood III, D. L., More, K. L., Atanassov, P. and Borup, R. L. (2005a). Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions. J. Electrochemical Society 152, 5, A1011–1020.CrossRefGoogle Scholar
  18. Xie, J., Wood III, D. L., Wayne, D. M., Zawodzinski, T. A., Atanassov, P. and Borup, R. L. (2005a). Durability of PEFCs at high humidity conditions. J. Electrochemical Society 152, 1, A104–113.CrossRefGoogle Scholar
  19. Xing, L., Hossain, M. A., Tian, M., Beauchemin, D., Adjemian, K. T and Jerkiewicz, G. (2014). Platinum electro-dissolution in acdic media upon potential cycling. Electrocatalysis 5, 1, 96–112.CrossRefGoogle Scholar
  20. Zhang, X., Guo, L. and Liu, H. (2015). Recovery mechanisms in proton exchange membrane fuel cells after accelerated stress tests. J. Power Sources, 296, 327–334.CrossRefGoogle Scholar

Copyright information

© KSAE/ 111-04 2019

Authors and Affiliations

  • Seungki Yang
    • 1
    Email author
  • Sungbum Choi
    • 1
  • Youngmin Kim
    • 1
  • Jongjin Yoon
    • 1
  • SeJoon Im
    • 1
  • Hyunsuk Choo
    • 1
  1. 1.Fuel Cell System Test TeamHyundai Motor CompanyGiheung-gu, Yongin-si, GyeonggiKorea

Personalised recommendations