Advertisement

Experimental Study of Particulate Emission Characteristics from A Gasoline Direct Injection Engine During Starting Process

  • Yan Su
  • Fangxi XieEmail author
  • Wei Hong
  • Xiaoping Li
  • Tingting Hu
Article
  • 19 Downloads

Abstract

The engine starting process presents high particulate emissions in exhaust. This study gives a systematic investigation on particulate emission characteristics, including particulate matter (PM) mass, soluble organic fraction (SOF) mass, C10-C26 n-Alkanes and particle-bound polycyclic aromatic hydrocarbons (PAHs), that have been emitted from a gasoline direct injection (GDI) engine measured by Gas chromatography-mass spectrometry during starting period. The results show that particulate emissions under the warm coolant start condition decline dramatically compared with the cold start condition. 90 % of particulate number (PN) emitted during the cold and warm start periods generally are nucleation-mode particles. Over 50 % PM mass and PAHs emissions are emitted in the first 0–13 s stage. SOF mass accounts more than 60 % in PM mass emissions, especially under the warm coolant start condition. Some C23–C26 n-Alkanes are detected under the cold start condition which demonstrates that partial particulate composition directly comes from lubricant. The concentration of the two ring PAHs is the lowest among PAHs while the four to six ring PAHs are higher under the cold start operation. The toxicity of PAHs which is evaluated by Benzo(a)pyrene equivalent toxicity (BEQ) value of the total PAHs emissions shows a decline of 66.83 % under the warm start condition.

Key words

Polycyclic aromatic hydrocarbons Particulate matter emission Gasoline direct injection engine Start condition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aakko, P. and Nylund, N. O. (2003). Particle emissions at moderate and cold temperatures using different fuels. SAE Paper No. 2003-01-3285.Google Scholar
  2. Aceves, M. and Grimalt, J. O. (1993). Seasonally dependent size distributions of aliphatic and polycyclic aromatic hydrocarbons in urban aerosols from densely populated areas. Environmental Science and Technology 27, 13, 2896–2908.CrossRefGoogle Scholar
  3. An, Y. Z., Li, X., Teng, S. P., Wang, K., Pei, Y. Q., Qin, J. and Zhao, H. (2016). Development of a soot particle model with PAHs as precursors through simulations and experiments. Fuel, 179, 246–257.CrossRefGoogle Scholar
  4. Ayala, A. and Herner, J. D. (2005). Transient ultrafine particle emission measurements with a new fast particle aerosol sizer for a trap equipped diesel truck. SAE Paper No. 2005-01-3800.Google Scholar
  5. Bandel, W., Fraidl, G. K., Kapus, P. E., Sikinger, H. and Cowland, C. N. (2006). The turbocharged GDI engine: Boosted synergies for high fuel economy plus ultra-low emission. SAE Paper No. 2006-01-1266.Google Scholar
  6. Braisher, M., Stone, R. and Price, P. (2010). Particle number emissions from a range of european vehicles. SAE Paper No. 2010-01-0786.Google Scholar
  7. Carter, R. N., Menacherry, P., Pfefferle, W. C., Muench, G. and Roychoudhury, S. (1998). Laboratory evaluation of ultra-short metal monolith catalyst. SAE Paper No. 980672.Google Scholar
  8. Chan, T. W., Meloche, E., Kubsh, J., Brezny, R., Rosenblatt, D. and Rideout, G. (2013). Impact of ambient temperature on gaseous and particle emissions from a direct injection gasoline vehicle and its implications on particle filtration. SAE Int. J. Fuels and Lubricants, 62, 350–371.CrossRefGoogle Scholar
  9. Dockery, D. W. and Pope, C. A. (1994). Acute respiratory effects of particulate air pollution. Annual Review of Public Health, 15, 107–132.CrossRefGoogle Scholar
  10. Eastwood, P. (2008). Fundamentals: Particulate Emissions from Vehicles. John Wiley & Sons. Hoboken, New Jersey, USA.Google Scholar
  11. Egebäck, K.-E., Henke, M., Rehnlund, B., Wallin, M. and Westerholm, R. (2005). Blending of Ethanol in Gasoline for Spark Ignition Engines-problem Inventory and Evaporative Measurements. AVL MTC Motortestcenter AB.Google Scholar
  12. Gauderman, W. J., Urman, R., Avol, E., Berhane, K., McConnell, R., Rappaport, E., Chang, R., Lurmann, F. and Gilliland, F. (2015). Association of improved air quality with lung development in children. New England J. Medicine, 372, 905–913.CrossRefGoogle Scholar
  13. Ghadikolaei, M. A. (2016). Effect of alcohol blend and fumigation on regulated and unregulated emissions of IC engines - A review. Renewable and Sustainable Energy Reviews, 57, 1440–1495.CrossRefGoogle Scholar
  14. Gupta, T., Kothari, A., Srivastava, D. K. and Agarwal, A. K. (2010). Measurement of number and size distribution of particles emitted from a mid-sized transportation multipoint port fuel injection gasoline engine. Fuel, 899, 2230–2233.CrossRefGoogle Scholar
  15. IARC (1989). Occupational exposures in petroleum refining; crude oil and major petroleum fuels. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Lyon, France.Google Scholar
  16. Kazakov, A., Wang, H. and Frenklach, M. (1995). Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar. Combustion and Flame, 1001-2, 111–120.CrossRefGoogle Scholar
  17. Khalek, I. A., Bougher, T. and Jetter, J. J. (2010). Particle emissions from a 2009 gasoline direct injection engine using different commercially available fuels. SAE Int. J. Fuels and Lubricants, 32, 623–637.CrossRefGoogle Scholar
  18. Kittelson, D. B. (1998). Engines and nanoparticles: A review. J. Aerosol Science, 295-6, 575–588.CrossRefGoogle Scholar
  19. Kokko, J., Rantanen, L., Pentikäinen, J., Honkanen, T., Aakko, P. and Lappi, M. (2000). Reduced particulate emissions with reformulated gasoline. SAE Paper No. 2000-01-2017.Google Scholar
  20. Lechner, G., Knafl, A., Assanis, D. N., Tseregounis, S. I., McMillan, M. L., Tung, S. C., Mulawa, P. A., Bardasz, E. and Cowling, S. (2002). Engine oil effects on the friction and emissions of a light-duty, 2.2 L direct - injection - diesel engine part 1 - engine test results. SAE Paper No. 2002-01-2681.Google Scholar
  21. Lee, J. J., Huang, K. L., Yu, Y. C. Y. and Chen, M. S. S. (2004). Laboratory retention of vapor-phase PAHs using XAD adsorbents. Atmospheric Environment, 3836, 6185–6193.CrossRefGoogle Scholar
  22. Lei, L., Suidan, M. T., Khodadoust, A. P. and Tabak, H. H. (2004). Assessing the bioavailability of PAHs in fieldcontaminated sediment using XAD-2 assisted desorption. Environmental Science & Technology, 386, 1786–1793.CrossRefGoogle Scholar
  23. Maricq, M. M., Podsiadlik, D. H., Brehob, D. D. and Haghgooie, M. (1999). Particulate emissions from a direct-injection spark-ignition (DISI) engine. SAE Paper No. 1999-01-1530.Google Scholar
  24. Mariraj Mohan, S. (2016). An overview of particulate dry deposition: Measuring methods, deposition velocity and controlling factors. Int. J. Environmental Science and Technology, 131, 387–402.CrossRefGoogle Scholar
  25. Myung, C. L., Ko, A. and Park, S. (2014). Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 1. Int. J. Automotive Technology, 152, 203–218.CrossRefGoogle Scholar
  26. Nisbet, I. C. T. and LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 163, 290–300.CrossRefGoogle Scholar
  27. Ntziachristos, L., Mamakos, A., Samaras, Z., Mathis, U., Mohr, M., Thompson, N., Stradling, R., Forti, L. and de Serves, C. (2004). Overview of the european “particulates” project on the characterization of exhaust particulate emissions from road vehicles: Results for light-duty vehicles. SAE Paper No. 2004-01-1985.Google Scholar
  28. Peckham, M. S., Finch, A., Campbell, B., Price, P. and Davies, M. T. (2011). Study of particle number emissions from a turbocharged Gasoline Direct Injection (GDI) engine including data from a fast-response particle size spectrometer. SAE Paper No. 2011-01-1224.Google Scholar
  29. Petitjean, D., Bernardini, L., Middlemass, C. and Shahed, S. M. (2004). Advanced gasoline engine turbocharging technology for fuel economy improvements. SAE Paper No. 2004-01-0988.Google Scholar
  30. Quiros, D. C., Zhang, S., Sardar, S., Kamboures, M. A., Eiges, D., Zhang, M., Jung, H. S., Mccarthy, M. J., Chang, M. C. O., Ayala, A., Zhu, Y. F., Huai, T. and Hu, S. H. (2015). Measuring particulate emissions of light duty passenger vehicles using Integrated Particle Size Distribution (IPSD). Environmental Science & Technology, 499, 5618–5627.CrossRefGoogle Scholar
  31. Riddle, S. G., Robert, M. A., Jakober, C. A., Hannigan, M. P. and Kleeman, M. J. (2007). Size distribution of trace organic species emitted from light-duty gasoline vehicles. Environmental Science & Technology, 4121, 7464–7471.CrossRefGoogle Scholar
  32. Schauer, J. J., Kleeman, M. J., Cass, G. R. and Simoneit, B. R. T. (2002). Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles. Environmental Science & Technology, 366, 1169–1180.Google Scholar
  33. Sobotowski, R. A., Butler, A. D. and Guerra, Z. (2015). A pilot study of fuel impacts on PM emissions from lightduty gasoline vehicles. SAE Int. J. Fuels and Lubricants, 81, 214–233.CrossRefGoogle Scholar
  34. Tang, M. J., Li, Q. F., Xiao, L. F., Li, Y. P., Jensen, J. L., Liou, T. G. and Zhou, A. H. (2012). Toxicity effects of short term diesel exhaust particles exposure to human Small Airway Epithelial Cells (SAECs) and human lung carcinoma epithelial cells (A549). Toxicology Letters, 2153, 181–192.CrossRefGoogle Scholar
  35. The European Parliament and the Council of the European Union (2009). Regulation (EC) No. 595/2009 of the European Parliament and of the Council of June 18, 2009 on Type-approval of Motor Vehicles and Engines with Respect to Emissions from Heavy Duty Vehicles (Euro VI) and on Access to Vehicle Repair and Maintenance Information and Amending Regulation (EC) No. 715/2007 and Directive 2007/46/EC and Repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC. Regulation (EC), No 595/2009.Google Scholar
  36. Tsai, P. J., Shih, T. S., Chen, H. L., Lee, W. J., Lai, C. H. and Liou, S. H. (2004). Assessing and predicting the exposures of Polycyclic Aromatic Hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmospheric Environment, 382, 333–343.CrossRefGoogle Scholar
  37. Whelan, I., Samuel, S., Timoney, D. and Hassaneen, A. (2010). Characteristics of nano-scale particulates from gasoline turbo-intercooled direct-injection engine. SAE Int. J. Fuels and Lubricants, 32, 839–848.CrossRefGoogle Scholar
  38. Whelan, I., Smith, W., Timoney, D. and Samuel, S. (2012). The effect of engine operating conditions on engine-out particulate matter from a gasoline direct-injection engine during cold-start. SAE Paper No. 2012-01-1711.Google Scholar
  39. Zhang, S. and McMahon, W. (2012). Particulate emissions for LEV II light-duty gasoline direct injection vehicles. SAE Int. J. Fuels and Lubricants 5, 2, 637–646.CrossRefGoogle Scholar
  40. Zimmerman, N., Wang, J. M., Jeong, C. H., Wallace, J. S. and Evans, G. J. (2016). Assessing the climate trade-offs of gasoline direct injection engines. Environmental Science & Technology, 5015, 8385–8392.CrossRefGoogle Scholar

Copyright information

© KSAE 2019

Authors and Affiliations

  • Yan Su
    • 1
    • 2
  • Fangxi Xie
    • 1
    • 2
    Email author
  • Wei Hong
    • 1
    • 2
  • Xiaoping Li
    • 1
    • 2
  • Tingting Hu
    • 3
  1. 1.State Key Laboratory of Automobile Dynamic Simulation and ControlJilin UniversityChangchunChina
  2. 2.College of Automotive EngineeringJilin UniversityChangchunChina
  3. 3.Inspection and Quarantine Technology CenterJilin Entry Exit Inspect & Quarantine BurChangchunChina

Personalised recommendations