International Journal of Automotive Technology

, Volume 20, Issue 1, pp 157–168 | Cite as

Unconstrained Shape Optimisation of a Lightweight Side Door Reinforcing Crossbar for Passenger Vehicles Using a Comparative Evaluation Method

  • Mladenko KajtazEmail author


This paper presents an efficient and extensive exploratory search for lightweight side-door intrusion-bar assembly design concepts using the approach previously developed by the author. The study aimed to discover latent dependence or other relationships between the geometry based design input parameters and the performance objectives (strength and lightweight) to identify the best engineering concept designs. The utilisation of the adopted approach and the extended substructures in particular, allowed for more than 2.6 times more design alternatives to be explored in the same time frame, which significantly increased necessary confidence in the acquired discoveries since a priori hypothesis about factors or patterns of input parameters was absent. The Pearson product-moment correlation coefficient and the Spearman's rank correlation coefficient were used to discover any potential and latent relationships, and the effects significance plots were utilised to deduce the best settings for each parameter and construct a generalised preferred shape.

Key words

Impact beams Finite element analysis Substructuring Conceptual design 



crash resistance


force-displacement function


displacement, mm


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADR (2006). Vehicle Standard. Side Door Strength.Google Scholar
  2. Bai, J., Li, Y. and Zuo, W. (2017). Cross-sectional shape optimisation for thin-walled beam crashworthiness with stamping constraints using genetic algorithm. Int. J. Vehicle Design 73, 1–3, 76–95.CrossRefGoogle Scholar
  3. Brooke, L. and Evans, H. (2009). Lighten up! Automotive Engineering International 117, 3, 6–22.Google Scholar
  4. Cui, X., Wang, S. and Hu, S. J. (2008). A method for optimal design of automotive body assembly using multi-material construction. Materials & Design 29, 2, 381–387.CrossRefGoogle Scholar
  5. Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T. (2000). A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In: Schoenauer, M., K. Deb, G. Rudolph, X. Yao, E. Lutton, J. Mereloand H.-P. Schwefel (eds.) Parallel Problem Solving from Nature PPSN VI. Spriger-Verlag Berlin Heidelberg. Heidelberg, Germany.Google Scholar
  6. EAA (2010). Stiffness and Strength Relevance of Car Components [Online]. European Aluminium Association. Google Scholar
  7. ESTECO (2012). ESTECO Products. modeFrontier.Google Scholar
  8. EUR-Lex (2011). A Roadmap for Moving to a Competitive Low Carbon Economy in 2050 [Online]. European Commission. Scholar
  9. Fang, J., Gao, Y., Sun, G., Xu, C. and Li, Q. (2016). Multiobjective sequential optimization for a vehicle door using hybrid materials tailorwelded structure. Proc. Institution of Mechanical Engineers, Part C: J. Mechanical Engineering Science 230, 17, 3092–3100.Google Scholar
  10. Gibson, T. L. (2000). Life cycle assessment of advanced materials for automotive applications. SAE Paper No. 2000-01-1486.Google Scholar
  11. Hou, S., Liu, T., Dong, D. and Han, X. (2014). Factor screening and multivariable crashworthiness optimization for vehicle side impact by factorial design. Structural and Multidisciplinary Optimization 49, 1, 147–167.CrossRefGoogle Scholar
  12. Kajtaz, M. (2011). Sustainable Design of a Side Door Reinforcing Assembly — Exploratory Optimisation. In: Hung, S., A. Subicand J. Wellnitz (eds.) Sustainable Automotive Technologies. Spriger-Verlag Berlin Heidelberg. Heidelberg, Germany.Google Scholar
  13. Kajtaz, M. (2012). Sustainable Design of a Side Door Reinforcing Assembly — Optimisation and Material Selection. In: Subic, A., J. Wellnitz, M. Learyand L. Koopmans (eds.) Sustainable Automotive Technologies. Spriger-Verlag Berlin Heidelberg. Heidelberg, Germany.Google Scholar
  14. Kajtaz, M., Subic, A. and Takla, M. (2012). Comparative Evaluation of Engineering Design Concepts Based on Non-linear Substructuring Analysis. In: Subic, A. (ed.) Advances in Engineering Systems Design and Materials. Spriger-Verlag Berlin Heidelberg. Heidelberg, Germany.Google Scholar
  15. Kajtaz, M., Subic, A. and Takla, M. (2014). An extended substructuring technique for efficient evaluation of nonlinear load-bearing structures in the conceptual design stage. Int. J. Computational Methods 11, 6, 1350086.CrossRefGoogle Scholar
  16. Marklund, P. O. and Nilsson, L. (2000). Optimization of a car body component subjected to side impact. Structural and Multidisciplinary Optimization 21, 5, 383–392.CrossRefGoogle Scholar
  17. Nagendra, S., Staubach, J. B., Suydam, A. J., Ghunakikar, S. J. and Akula, V. R. (2005). Optimal rapid multidisciplinary response networks: RAPIDDISK. Structural and Multidisciplinary Optimization 29, 3, 213–231.CrossRefGoogle Scholar
  18. NHTSA (2012}). Summary of Fuel Economy Performance [Online]}. US Government}.
  19. Nia, A. A. and Parsapour, M. (2014). Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections. Thin-Walled Structures, 74, 155–165.CrossRefGoogle Scholar
  20. Rais-Rohani, M., Solanki, K. N., Acar, E. and Eamon, C. D. (2010). Shape and sizing optimisation of automotive structures with deterministic and probabilistic design constraints. Int. J. Vehicle Design 54, 4, 309–338.CrossRefGoogle Scholar
  21. Simulia (2009). Simulia Products - Abaqus FEA [Online]. Google Scholar
  22. Uikey, D., Evans, D. A., Abad, S. and Padmanaban, R. (2005). Design exploration of bumper systems using advanced CAE techniques. SAE Paper No. 2005-01-1340.Google Scholar
  23. Xiong, F., Wang, D., Zhang, S., Cai, K., Wang, S. and Lu, F. (2018). Lightweight optimization of the side structure of automobile body using combined grey relational and principal component analysis. Structural and Multidisciplinary Optimization 57, 1, 441–461.CrossRefGoogle Scholar
  24. Yoshimura, M., Nishiwaki, S. and Izui, K. (2005). A multiple cross-sectional shape optimization method for automotive body frames. J. Mechanical Design 127, 1, 49–57.CrossRefGoogle Scholar
  25. Zhang, X. and Zhang, H. (2013). Energy absorption of multi-cell stub columns under axial compression. Thin- Walled Structures, 68, 156–163.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of EngineeringRMIT UniversityMelbourneAustralia

Personalised recommendations