International Journal of Automotive Technology

, Volume 19, Issue 4, pp 643–650 | Cite as

Potential of Real-Time Cylinder Pressure Analysis by Using Field Programmable Gate Arrays

  • Jan PflugerEmail author
  • Rene Savelsberg
  • Thomas Hülshorst
  • Stefan Pischinger
  • Jakob Andert


In this paper, a Field Programmable Gate Array (FPGA) was used to implement a real-time cylinder pressure analysis. The goal of the project was to improve the accuracy of calculated heat release and center of combustion calculations to enhance the precision of engine control functions. Compared to today’s real-time pressure analysis systems, several additional physical effects were taken into account for this objective. The wall heat transfer was calculated based on the approach published by Hohenberg. A chemical equilibrium with six substances was assumed for the mixture composition and a real-time calculation method was developed. Furthermore, a two-zone model was adapted and implemented for this realtime analysis. The validation of the results and the rating of the improvement in precision were based on GT-SUITE simulation results as an offline reference tool. Compared to state-of-the-art analysis systems, it was possible to reduce the average error of the center of combustion position from 1.6° to 0.5° crank angle (CA) by taking the investigated effects into account. Moreover, it was possible to significantly reduce the time required for the calculation from one complete combustion cycle to 0.2°CA at an engine speed of 3,000 rpm by using a continuous calculation method on the FPGA. This led to an additional improvement of the ability to control the engine, especially under highly dynamic operation conditions.

Key Words

Cylinder pressure indication and analysis Real-time simulation FPGA Combustion control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AFT Atlas Fahrzeugtechnik GmbH (2009). Protronic Manual. Version 2.1.0Google Scholar
  2. Andert, J., Mertens, F. and Ross, H. (2011). Entwicklung eines FPGA-basierten Indiziermoduls für ein Rapid Control Prototyping System zur zylinderdruckgeführten Regelung von Verbrennungsmotoren. 5 Fachtagung Autoreg 2011 Steuerung und Regelung von Fahrzeugen und Motoren.Google Scholar
  3. Andert, J. (2012). Modellbasierte Echtzeitoptimierung der Ottomotorischen Selbstzündung. Ph. D. Dissertation. RWTH Aachen University. Aachen, Germany.Google Scholar
  4. Andert, J., Herold, K., Savelsberg, R. and Pischinger, M. (2016). NVH optimization of range extender engines by electric torque profile shaping. IEEE Trans. Control Systems Technology 25, 4, 1465–1472CrossRefGoogle Scholar
  5. Andert, J., Wick, M., Lehrheuer, B., Sohn, C., Albin, T. and Pischinger, S. (2017). Autoregressive modeling of cycleto-cycle correlations in homogeneous charge compression ignition combustion. Int. J. Engine Research. Available at: DOI 10.1177/1468087417731043Google Scholar
  6. AVL List GmbH (2013). AVL Indicom Users Guide. Version 2.5Google Scholar
  7. Dase, C. and Viele, M. (2005). Rapid prototyping an FPGA-based engine controller for a 600cc super-sport motorcycle. SAE Paper No. 2005–01-0067Google Scholar
  8. Eichelberg, G. (1939). Some new investigations on old combustion engine problems. Engineering, 148, 463–547Google Scholar
  9. FEV GmbH (2011). FEVIS Manual. Version 2.22Google Scholar
  10. Gabrick, M., Nicholson, R., Winters, F., Young, B. and Patton, J. (2006). FPGA considerations for automotive applications. SAE Paper No. 2006–01-0368Google Scholar
  11. GammaTechnologies (2013). GT-SUITE Manual. Version 7.4.0Google Scholar
  12. Gorenflo, E. (1997). Einfluss der Luftverhältnisstreuung auf die Zyklischen Schwankungen beim Ottomotor. VDIVerlag. Düsseldorf, Germany.Google Scholar
  13. Hadler, J., Rudolph, F., Dorenkamp, R., Stehr, H., Hilzendeger, J. and Kranzusch, S. (2008). Der neue 2,0-l-TDI-Motor von Volkswagen für niedrigste abgasgrenzwerte-Teil 1 MTZ-Motortechnische Zeitschrift 69, 5, 386–395Google Scholar
  14. Heywood, J. B. (1988). Internal Combustion Engines Fundamentals. McGraw-Hill. New York, USA.Google Scholar
  15. Heywood, J. B. and Komiyama, K. (1973). Predicting NOx emissions and effects of exhaust gas recirculation in spark-ignition engines. SAE Paper No. 730475Google Scholar
  16. Jeschke, J., Lang, T., Wendt, J., Mannigel, D., Henn, M. and Nitzke, H.-G. (2007). Verbrennungsgeregeltes Motormanagement für direkteinspritzende Dieselmotoren. 16 Aachener Kolloquium Fahrzeugund Motorentechnik, 1391–1410Google Scholar
  17. Kleinschmidt, W. (1974). Untersuchung des Arbeitsprozesses und der NO-, NO2-und CO-Bildung in Ottomotoren. Ph. D. Dissertation. RWTH Aachen University. Aachen, Germany.Google Scholar
  18. Kremer, F. (2013). Verbrennungsratenregelung durch Mehrfacheinspritzung im Dieselmotor. Ph. D. Dissertation. RWTH Aachen University. Aachen, Germany.Google Scholar
  19. Lehrheuer, B., Wick, M., Lakemeier, J. and Andert, J. (2015). In-cycle control offers high potential for new combustion concepts. MTZ Worldwide 76, 12, 36–41CrossRefGoogle Scholar
  20. Lehrheuer, B., Pischinger, S., Wick, M., Andert, J., Berneck, D., Ritter, D., Albin, T. and Thewes, M. (2016). A study on in-cycle combustion control for gasoline controlled autoignition. SAE Paper No. 2016–01-0754Google Scholar
  21. Merker, G., Schwarz, C. and Teichmann, R. (2011). Grundlagen Verbrennungsmotoren. Springer Vieweg. Wiesbaden, Germany.CrossRefGoogle Scholar
  22. Newhall, S. (1970). Kinetics of nitric oxide formation in high-pressure flames. 13th Int. Symp. Combustion, 381–389Google Scholar
  23. Pfluger, J., Andert, J., Ross, H. and Mertens, F. (2012). Rapid control prototyping für zylinderdruckindizierung. MTZ-Motortechnische Zeitschrift 73, 11, 878–883CrossRefGoogle Scholar
  24. Pflaum, W. and Mollenhauer, K. (1977). Wärmermeübergang in der Verbrennungskraftmaschine. Springer-Verlag. Wien, Austria.CrossRefGoogle Scholar
  25. Pischinger, R. (2009). Thermodynamik der Verbrennungskraftmaschine. Springer-Verlag. Wien, Austria.Google Scholar
  26. Pischinger, R. (1991). Thermodynamische Probleme bei der ottomotorischen Prozessrechnung. TU Graz, 37–46Google Scholar
  27. Prescher, K. (1984). Methoden zur Thermodynamischen Analyse der Verbrennungsvorgänge in Ottomotoren. Ph. D. Dissertation. Universität Stuttgart. Stuttgart, Germany.Google Scholar
  28. Ritter, D., Andert, J., Abel, D. and Albin, T. (2017). Modelbased control of gasoline-controlled auto-ignition. Int. J. Engine Research 19, 2, 189–201CrossRefGoogle Scholar
  29. Schnorbus, T. G. (2010). Zylinderdruckgeführtes Einspritzmanagement beim Dieselmotor. Ph. D. Dissertation. RWTH Aachen University. Aachen, Germany.Google Scholar
  30. Trajkovic, S., Milosavljevic, A., Tunestål, P. and Johansson, B. (2006) FPGA controlled pneumatic variable valve actuation. SAE Paper No. 2006–01-0041Google Scholar
  31. Weisser, G. A. (2001). Modelling of Combustion and Nitric Oxide Formation for Medium-speed DI Diesel Engines. Ph. D. Dissertation. ETH Zürich. Zürich, Swiss.Google Scholar
  32. Wilhelmsson, C. and Johansson, B. (2006). FPGA based engine feedback control algorithms. FISITA World Automotive Cong., JSAE.Google Scholar
  33. Woschni, G. (1965). Beitrag zum problem des wandwärmeübergangs im verbrennungsmotor. MTZ 26, 4, 128–133Google Scholar
  34. Wick, M., Lehrheuer, B., Albin, T., Andert, J. and Pischinger, S. (2017). Decoupling of consecutive gasoline controlled auto-ignition combustion cycles by field programmable gate array based real-time cylinder pressure analysis. Int. J. Engine Research 19, 2, 153–167CrossRefGoogle Scholar
  35. Zheng, M., Tan, Y., Reader, G., Asad, U., Han, X. and Wang, M. (2009). Prompt heat release analysis to improve diesel low temperature combustion. SAE Paper No. 2009–01-1883Google Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jan Pfluger
    • 1
    Email author
  • Rene Savelsberg
    • 1
  • Thomas Hülshorst
    • 1
  • Stefan Pischinger
    • 2
  • Jakob Andert
    • 3
  1. 1.Electronics & ElectrificationFEV Europe GmbHAachenGermany
  2. 2.Institute for Combustion EnginesRWTH Aachen UniversityAachenGermany
  3. 3.Junior Professorship for Mechatronic Systems for Combustion EnginesRWTH Aachen UniversityAachenGermany

Personalised recommendations