Injection Characteristics of Palm Methyl Ester Blended with Diesel Using Zuech’s Chamber

  • Prathan Srichai
  • Pop-Paul Ewphun
  • Chinda Charoenphonphanich
  • Preechar Karin
  • Manida Tongroon
  • Nuwong Chollacoop
Article
  • 42 Downloads

Abstract

This research attempts to characterize the injection of palm biodiesel blended with diesel in a Zuech’s chamber. Thailand conventional diesel (mandated blend of biodiesel at 5 % or B5), palm biodiesel (B100) and four other biodiesel blends ratios (B20, B40, B60 and B80) were investigated with single hole injector of 140 and 200 μm diameters, injection pressure of 40 MPa to 160 MPa, constant back pressure of 4.5 MPa and energize time of 2.5 ms. The results show that increasing biodiesel blending ratios leads to longer injection delay, larger injection pressure drop, smaller injection quantity discharge coefficient (Cd) and shorter injection duration. With increasing biodiesel blending ratio, high Cavitation number from biodiesel viscosity decreases Reynolds number. Increasing injector diameter from 140 μm to 200 μm has reduced injection delay, increased fuel injection quantity, discharge coefficient and remaining injection duration. The increasing of injection pressure were improve, injection delay, injection duration, injection quantity and discharge coefficient until injection pressure 120 MPa. In addition at injection pressure over 120 MPa are decrease injection quantity and discharge coefficient, it effect form the cavitation phenomena. Increasing of viscosity, density, Bulk modulus and sound velocity were effect to increase injection delay, with reduce injection quantity, injection duration and pressure drop during injection process.

Key words

Palm methyl ester Injection characteristics Injector diameter Injector pressure Zuench’s chamber 

Nomenclature

measure

injection rate, mg/ms

ρf

fuel density, kg/m3

V0

internal volume of zuech’s chamber, cm3

\(\frac{dp}{dt}\)

rate of pressure change in chamber, MPa/ ms

K

isothermal bulk modulus, MPa

pb

back pressure in Zuech’s chamber, MPa

dv

volume change during bulk modulus test, cm3

nOrifice

number of orifices, hole

A

cross-section area of orifice exit, mm2

ΔP

difference of injection and back pressure, MPa

Cd

discharge coefficient

Vaverage

average of flow velocity, m/s

Cv

coefficient of velocity

Dinj

diameter of orifice exit, μm

v

fuel viscosity, cSt

Ca

cavitation number

Pi

injection pressure, MPa

Pv

vapor pressure, MPa

Pb

back pressure, MPa

SOI

start of injection

SOE

start of energize

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, Y., Fan, L. Y., Ma, X. Z., Peng, H. L. and Song, E. Z. (2016). Effect of injector parameters on the injection quantity of common rail injection system for diesel engines. Int. J. Automotive Technology 17, 4, 576–579.CrossRefGoogle Scholar
  2. Battistoni, M. and Grimaldi, C. N. (2010). Analysis of transient cavitating flows in diesel injectors using diesel and biodiesel fuels. SAE Paper No. 2010-01-2245.Google Scholar
  3. Benajes, J., Pastor, J. V., Payri, R. and Plazas, A. H. (2004). Analysis of the influence of diesel nozzle geometry in the injection rate characteristic. J. Fluid Engineering, 126, 63–71.CrossRefGoogle Scholar
  4. Bergstrand, P., Persson, F., Forsth, M. and Denbratt, I. (2003). A study of the influence of nozzle orifice geometries on fuel evaporation using laser-induced exciplex fluorescence. SAE Paper No. 2003-01-1836.CrossRefGoogle Scholar
  5. Boehman, A. L., Morris, D. and Szybist, J. (2004). The impact of the bulk modulus of diesel fuels on fuel injection timing. Energy & Fuels 18, 6, 1877–1882.CrossRefGoogle Scholar
  6. Borhanipour, M., Karin, P., Tongroon, M., Chollacoop, N. and Hanamura, K. (2014). Comparison study on fuel properties of biodiesel from jatropha, palm and petroleum based diesel fuel. SAE Paper No. 2014-01-2017.CrossRefGoogle Scholar
  7. Catania, A. E., Ferrari, A., Manno, M. and Spessa, E. (2008). Experimental investigation of dynamics effects on multiple-injection common rail system performance experimental investigation of dynamics. J. Engineering for Gas Turbines and Power 130, 3.Google Scholar
  8. Dernotte, J., Hespel, C., Foucher, F., Houille, S. and Mounaim-Rousselle, C. (2012). Influence of physical fuel properties on the injection rate in a diesel injector. Fuel, 96, 153–160.CrossRefGoogle Scholar
  9. Desantes, J. M., Payri, R., Salvador, F. and Gimeno, J. (2003). Measurements of spray momentum for the study of cavitation in diesel injection nozzles. SAE Paper No. 2003-01-0703.CrossRefGoogle Scholar
  10. Freitas, S. V. D., Paredes, M. L. L., Daridon, J.-L., Lima, A. S. and Coutinho, J. A. P. (2013). Measurement and prediction of the speed of sound of biodiesel fuels. Fuel, 103, 1018–1022.CrossRefGoogle Scholar
  11. Han, D., Duan, Y., Wang, C., Lin, H. and Huang, Z. (2014). Experimental study on injection characteristics of fatty acid esters on a diesel engine common rail system. Fuel, 123, 19–25.CrossRefGoogle Scholar
  12. Hou, J., Wen, Z., Liu, Y. and Jiang, Z. (2014). Experimental study on the injection characteristics of dimethyl etherbiodiesel blends in a common-rail injection system. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 228, 3, 263–271.Google Scholar
  13. Hiroyasu, H. and Arai, M. (1990). Structures of fuel sprays in diesel engines. SAE Paper No. 900475.CrossRefGoogle Scholar
  14. Ishikawa, S., Ohmori, Y., Fukushima, S., Suzuki, T., Takamura, A. and Kamimoto, T. (2000). Measurement of rate of multiple-injection in CDI diesel engines. SAE Paper No. 2000-01-1257.CrossRefGoogle Scholar
  15. Jaroonjitsathian, S., Akarapanjavit, N., Sa-norh, S., Inochanon, R., Wuttimongkolchai, A., Tipdecho, C., Tsuchihashi, K. and Shirakawa, H. (2009). Evaluation of 5 to 20 % biodiesel blend on heavy-duty common-rail diesel engine. SAE Paper No. 2009-01-1894.CrossRefGoogle Scholar
  16. Jiang, G., Zhang, Y., Wen, H. and Xiao, G. (2015). Study of the generated density of cavitation inside diesel nozzle using different fuels and nozzles. Energy Conversion and Management, 103, 208–217.CrossRefGoogle Scholar
  17. Jung, D., Wang, W. L., Knafl, A., Jacobs, T. J., Hu, S. J. and Assanis, D. N. (2008). Experimental investigation of abrasive flow machining effects on injector nozzle geometries, engine performance, and emissions in a di diesel engine. Int. J. Automotive Technology 9, 1, 9–15.CrossRefGoogle Scholar
  18. Keat Teong, L. and Cynthia, O. B. (2013). Environmental Sustainability Assessment of Biofuel Production from Oil Palm Biomass. Springer Science Business Media. Singapore.Google Scholar
  19. Hoekman, S. K. and Robbins, C. (2012). Review of the effects of biodiesel on NOx emissions. Fuel Processing Technology, 96, 237–249.CrossRefGoogle Scholar
  20. Knefel, T. (2011). The evaluation of the characteristic injection times of a multiple fuel dose. J. KONES Powertrain and Transport 18, 2, 205–213.Google Scholar
  21. Li, Y., Guo, H., Ma, X., Wang, J.-X. and Xu, H. (2014). Experimental study of effect of nozzle diameter on nearfield spray behavior of diesel sprays in non-evaporating conditions. SAE Paper No. 2014-01-1405.Google Scholar
  22. Lim, O. T. and Lee, S. J. (2016). Influence of nozzle hole diameter and orifice diameter on dme spray to get the similar heat value with diesel spray using the constant volume chamber. Int. J. Automotive Technology 17, 6, 1023–1031.CrossRefGoogle Scholar
  23. Moon, S., Tsujimura, T., Gao, Y., Park, S., Wang, J., Kurimoto, N., Nishijima, Y. and Oguma, M. (2013). Biodiesel effects on transient needle motion and nearexit flow characteristics of a high-pressure diesel injector. Int. J. Engine Research 15, 4, 504–518.CrossRefGoogle Scholar
  24. Pandey, R. K., Rehman, A. and Sarviya, R. M. (2012). Impact of alternative fuel properties on fuel spray behavior and atomization. Renewable and Sustainable Energy Reviews 16, 3, 1762–1778.CrossRefGoogle Scholar
  25. Payri, F., Bermudez, V., Payri, R. and Salvador, F. J. (2004a). The influence of cavitation on the internal flow spray characteristics in diesel injection nozzle. Fuel 83, 4–5, 419-431.CrossRefGoogle Scholar
  26. Payri, R., Molina, S., Salvador, F. J. and Gimeno, J. (2004b). A study the relation between nozzle geometry internal flow and spray characteristic in injection systems. KSME Int. J. 18, 7, 1222–1235.CrossRefGoogle Scholar
  27. Payri, R., García, J. M., Salvador, F. J. and Gimeno J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel 84, 5, 551–561.CrossRefGoogle Scholar
  28. Payri, R., Salvador, F. J., Gimeno, J. and de la Morena, J. (2009). Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. Int. J. Heat and Fluid Flow 30, 4, 768–777.CrossRefGoogle Scholar
  29. Plamondon, E. and Seers, P. (2014). Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/dieselfuel blends. Applied Energy, 131, 411–424.CrossRefGoogle Scholar
  30. Pulkrabek, W. W. (2003). Engineering Fundamentals of the Internal Combustion Engine. 2nd edn. Prentice Hall. New Jersey, USA.Google Scholar
  31. Qin, J.-R., Dan, T., Lai, M.-C., Savonen, C., Schwartz, E. and Brkyzik, W. (1999). Correlating the diesel spray behavior to nozzle design. SAE Paper No. 1999-01-3555.CrossRefGoogle Scholar
  32. Salvador, F. J., Gimeno, J., De la Morena, J. and Carreres, M. (2012). Using one-dimensional modeling to analyze the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Results of the simulations and discussion. Energy Conversion and Management 54, 1, 122–132.CrossRefGoogle Scholar
  33. Salvador, F. J., Martínez-López, J., Romero, J.-V. and Roselló, M.-D. (2011). Influence of biofuels on the internal flow in diesel injector nozzles. Mathematical and Computer Modelling 54, 7–8, 1699-1705.MathSciNetCrossRefMATHGoogle Scholar
  34. Schmidt, D. P. and Corradini, M. L. (2001). The internal flow of diesel fuel injector nozzles: A review. Int. J. Engine Research 2, 1, 1–22.CrossRefGoogle Scholar
  35. Siriwardhana, M., Opathella, G. K. C. and Jha, M. K. (2009). Bio-diesel: Initiatives, potential and prospects in Thailand: A review. Energy Policy 37, 2, 554–559.CrossRefGoogle Scholar
  36. Siano, D. (2010). Fuel Injection. 1st edn. SciYo. Rijeka, Croatia.CrossRefGoogle Scholar
  37. Suh, H. K., Park, S. H. and Lee, C. S. (2008). Experiment investigation of nozzle flow characteristic for diesel and biodiesel. Int. J. Automotive Technology 9, 2, 217–224.CrossRefGoogle Scholar
  38. Som, S., Longman, D. E., Ramírez, A. I. and Aggarwal, S. K. (2010). A comparison of injector flow and spray characteristics of biodiesel with petrodiesel. Fuel 89, 12, 4014–4024.CrossRefGoogle Scholar
  39. Takiran, Ö. O. and Ergeneman, M. (2011). Experimental study on diesel spray characteristic and auto ignition process. J. Combustion, 2011, 528126.Google Scholar
  40. Tinprabath, P., Hespel, C., Chanchaona, S. and Foucher, F. (2013). Influence of biodiesel and diesel fuel blends on the injection rate and spray injection in non-vaporizing conditions. SAE Paper No. 2013-24-0032.CrossRefGoogle Scholar
  41. Topaiboul, S. and Chollacoop, N. (2010). Biodiesel as a lubricity additive for ultra low sulfur diesel. Songklanakarin. J. Science and Technology 32, 2, 153–156.Google Scholar
  42. Tziourtzioumis, D. and Stamatelos, A. (2012). Effects of a 70 % biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine. Energy Conversion and Management, 60, 56–67.CrossRefGoogle Scholar
  43. Nurick, W. H. (1976). Orifice cavitation and it effect on spray mixing. J. Fluids Engineering 98, 4, 681–687.CrossRefGoogle Scholar
  44. Seykens, X. L. J., Somers, L. M. T. and Baert, R. S. G. (2004). Modelling of common rail fuel injection system and influence of fluid properties on injection process. Proc. VAFSEP, Dublin, Ireland.Google Scholar
  45. Ubertini, S. (2004). Injection pressure fluctuations model applied to a multidimensional code for diesel engines simulation. ASME 7th Biennial Conf. Engineering Systems Design and Analysis, 437–445.Google Scholar
  46. Zhong, W., He, Z., Wang, Q. and Jiang, Z. (2013). Investigation of the cavitating flow in injector nozzles for diesel and biodiesel. AIP Conf. Proc. 1547, 40, Xi'an, Shaanxi Province, China.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Prathan Srichai
    • 1
  • Pop-Paul Ewphun
    • 2
  • Chinda Charoenphonphanich
    • 1
  • Preechar Karin
    • 2
  • Manida Tongroon
    • 3
  • Nuwong Chollacoop
    • 3
  1. 1.Faculty of EngineeringKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.International CollegeKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  3. 3.National Metal and Materials Technology Center (MTEC)National Science and Technology Development Agency (NSTDA)PathumthaniThailand

Personalised recommendations