Carbon Deposit Incineration During Engine Flameout Using Non-Thermal Plasma Injection

  • Xiaoyu Pu
  • Yixi Cai
  • Yunxi Shi
  • Jing Wang
  • Linbo Gu
  • Jing Tian
  • Runlin Fan


In order to investigate the influence of initial regeneration temperatures on diesel particulate filter (DPF) regeneration, an experimental study of DPF regeneration was implemented using a dielectric barrier discharge (DBD) reactor, aided by exhaust waste heat after engine flameout. DPF trapping characteristics and carbon deposit mass were discussed to facilitate further data analysis and calculation. DPF regeneration was then investigated by comparison analysis of deposit removal mass, backpressure drop, and internal temperature change. The results revealed that a large amount of particulate matter (PM) was deposited in DPF with a high filtration efficiency of about 90 %. The deposit removal rate and percentage drop of the backpressure both maximized at the initial temperature of 100 °C. During DPF regeneration, the sharp rise of internal temperature indicated vigorous PM incineration and high CO2 emission. The results successfully demonstrated DPF regeneration using non-thermal plasma injection during engine flameout, and prominent heat durability was achieved in this method.

Key words

Diesel particulate filter Exhaust waste heat Carbon deposition Regeneration Non-thermal plasma Heat durability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beatrice, C., Iorio, S. D., Guido, C. and Napolitano, P. (2012). Detailed characterization of particulate emissions of an automotive catalyzed dpf using actual regeneration strategies. Experimental Thermal & Fluid Science, 39, 45–53.CrossRefGoogle Scholar
  2. Bensaid, S., Marchisio, D. L., Fino, D., Saracco, G. and Specchia, V. (2009). Modelling of diesel particulate filtration in wall-flow traps. Chemical Engineering Journal 154, 1–3, 211-218.CrossRefGoogle Scholar
  3. Cédric, L., Goriaux, M., Tassel, P., Perret, P., André, M. and Liu, Y. (2016). Impact of aftertreatment device and driving conditions on black carbon, ultrafine particle and NOx emissions for Euro 5 Diesel and gasoline vehicles. Transportation Research Procedia, 14, 3079–3088.CrossRefGoogle Scholar
  4. Chen, K., Martirosyan, K. S. and Luss, D. (2011a). Counterintuitive temperature excursions during regeneration of a diesel particulate filter. AIChE Journal 57, 8, 2229–2236.CrossRefGoogle Scholar
  5. Chen, K., Martirosyan, K. S. and Luss, D. (2010). Temperature excursions during soot combustion in a diesel particulate filter (DPF). Industrial & Engineering Chemistry Research 49, 21, 10358–10363.CrossRefGoogle Scholar
  6. Chen, K. S. M. K., Martirosyan, K. S. and Luss, D. (2011b). Transient temperature rise during regeneration of diesel particulate filters. Chemical Engineering Journal, 176-177, 144–150.CrossRefGoogle Scholar
  7. Chen, P. and Wang, J. (2014). Air-fraction modeling for simultaneous diesel engine NOx and PM emissions control during active DPF regenerations. Applied Energy, 122, 310–320.CrossRefGoogle Scholar
  8. Devins, J. C. (1956). Mechanism of ozone formation in the silent electric discharge. J. Electrochemical Society 103, 8, 460–466.CrossRefGoogle Scholar
  9. Fayad, M. A., Tsolakis, A., Fernández-Rodríguez, D., Herreros, J. M., Martos, F. J. and Lapuerta, M. (2017). Manipulating modern diesel engine particulate emission characteristics through butanol fuel blending and fuel injection strategies for efficient diesel oxidation catalysts. Applied Energy, 190, 490–500.CrossRefGoogle Scholar
  10. Grundmann, J., Müller, S. and Zahn, R. J. (2005). Treatment of soot by dielectric barrier discharges and ozone. Plasma Chemistry and Plasma Processing 25, 5, 455–466.CrossRefGoogle Scholar
  11. Han, J., Lee, J., Oh, Y., Cho, G. and Kim, H. (2017). Effect of UWS injection at low exhaust gas temperature on NOx removal efficiency of diesel engine. Int. J. Automotive Technology 18, 6, 951–957.CrossRefGoogle Scholar
  12. Huang, L., Bohac, S. V., Chernyak, S. M. and Batterman, S. A. (2015). Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling. Atmospheric Environment, 102, 228–238.CrossRefGoogle Scholar
  13. Jang, J., Lee, Y. and Kwon, O. (2017). Comparison of fuel efficiency and exhaust emissions between the aged and new DPF systems of Euro 5 diesel passenger car. Int. J. Automotive Technology 18, 5, 751–758.CrossRefGoogle Scholar
  14. Kogelschatz, U., Eliasson, B. and Hirth, M. (1988). Ozone generation from oxygen and air: discharge physics and reaction mechanisms. Ozone Science and Engineering 10, 4, 367–377.CrossRefGoogle Scholar
  15. Kuwahara, T., Nakaguchi, H., Kuroki, T. and Okubo, M. (2016). Continuous reduction of cyclic adsorbed and desorbed NOx in diesel emission using nonthermal plasma. J. Hazardous Materials, 308, 216–224.CrossRefGoogle Scholar
  16. Kuwahara, T., Nishii, S., Kuroki, T. and Okubo, M. (2013). Complete regeneration characteristics of diesel particulate filter using ozone injection. Applied Energy, 111, 652–656.CrossRefGoogle Scholar
  17. Lee, S. and Kim, T. Y. (2017). Performance and emission characteristics of a DI diesel engine operated with diesel/ DEE blended fuel. Applied Thermal Engineering, 121, 454–461.CrossRefGoogle Scholar
  18. Lee, S. J., Jeong, S. J., Kim, W. S. and Lee, C. B. (2008). Computational study on the effects of volume ratio of DOC/DPF and catalyst loading on the PM and NOx emission control for heavy-duty diesel engines. Int. J. Automotive Technology 9, 6, 659–670.CrossRefGoogle Scholar
  19. Ma, C., Gao, J., Zhong, L. and Xing, S. (2016). Experimental investigation of the oxidation behaviour and thermal kinetics of diesel particulate matter with non-thermal plasma. Applied Thermal Engineering, 99, 1110–1118.CrossRefGoogle Scholar
  20. Mokhri, M. A., Abdullah, N. R., Abdullah, S. A., Kasalong, S. and Mamat, R. (2012). Soot filtration recent simulation analysis in diesel particulate filter (DPF). Procedia Engineering, 41, 1750–1755.CrossRefGoogle Scholar
  21. Okubo, M., Arita, N., Kuroki, T. and Yamamoto, T. (2007). Carbon particulate matter incineration in diesel engine emissions using indirect nonthermal plasma processing. Thin Solid Films 515, 9, 4289–4295.CrossRefGoogle Scholar
  22. Okubo, M., Arita, N., Kuroki, T., Yoshida, K. and Yamamoto, T. (2008). Total diesel emission control technology using ozone injection and plasma desorption. Plasma Chemistry and Plasma Processing 28, 2, 173–187.CrossRefGoogle Scholar
  23. Okubo, M., Kuroki, T., Kawasaki, S., Yoshida, K. and Yamamoto, T. (2009). Continuous regeneration of ceramic particulate filter in stationary diesel engine by nonthermal-plasma-induced ozone injection. IEEE Trans. Industry Applications 45, 5, 1568–1574.CrossRefGoogle Scholar
  24. Palma, V., Ciambelli, P., Meloni, E. and Sin, A. (2013). Study of the catalyst load for a microwave susceptible catalytic DPF. Catalysis Today, 216, 185–193.CrossRefGoogle Scholar
  25. Shi, Y. X., Cai, Y. X., Li, X. H., Chen, Y. Y., Ding, D. W. and Tang, W. (2014). Meachanism and method of DPF regeneration by oxygen radical generated by NTP technology. Int. J. Automotive Technology 15, 6, 871–876.CrossRefGoogle Scholar
  26. Shi, Y. X., Cai, Y. X., Li, X. H., Xu, H., Li, W. J. and Pu, X. Y. (2016). Low temperature diesel particulate filter regeneration by atmospheric air non-thermal plasma injection system. Plasma Chemistry and Plasma Processing 36, 3, 783–797.CrossRefGoogle Scholar
  27. Shim, B. J., Park, K. S., Koo, J. M., Nguyen, M. S. and Jin, S. H. (2013). Estimation of soot oxidation rate in DPF under carbon and non-carbon based particulate matter accumulated condition. Int. J. Automotive Technology 14, 2, 207–212.CrossRefGoogle Scholar
  28. Soni, D. K. and Gupta, R. (2016). Numerical investigation of emission reduction techniques applied on methanol blended diesel engine. Alexandria Engineering Journal 55, 2, 1867–1879.CrossRefGoogle Scholar
  29. Tan, P. Q., Hu, Z. Y., Deng, K. Y., Lu, J. X., Lou, D. M. and Wan, G. (2007). Particulate matter emission modelling based on soot and SOF from direct injection diesel engines. Energy Conversion and Management 48, 2, 510–518.CrossRefGoogle Scholar
  30. Wang, P., Gu, W., Lei, L., Cai, Y. and Li, Z. (2015). Microstructural and components evolution mechanism of particular matter from diesel engines with non-thermal plasma technology. Applied Thermal Engineering, 91, 1–10.CrossRefGoogle Scholar
  31. Yagi, S. and Tanaka, M. (1979). Mechanism of ozone generation in air-fed ozonisers. J. Physics D: Applied Physics 12, 9, 1509–1520.CrossRefGoogle Scholar
  32. Yamamoto, K. and Sakai, T. (2015). Simulation of continuously regenerating trap with catalyzed DPF. Catalysis Today, 242, 357–362.CrossRefGoogle Scholar
  33. Yang, J., Jiang, Y., Karavalakis, G., Johnson, K. C., Kumar, S., Cocker, D. R. and Durbin, T. D. (2016). Impacts of dimethyl carbonate blends on gaseous and particulate emissions from a heavy-duty diesel engine. Fuel, 184, 681–688.CrossRefGoogle Scholar
  34. Yao, S., Fushimi, C., Madokoro, K. and Yamada, K. (2006). Uneven dielectric barrier discharge reactors for diesel particulate matter removal. Plasma Chemistry and Plasma Processing 26, 5, 481–493.CrossRefGoogle Scholar
  35. Yao, S., Kodama, S., Yamamoto, S., Fushimi, C., Madokoro, K., Mine, C. and Fujioka, Y. (2010). Characterization of an uneven DBD reactor for diesel PM removal. Asia-Pacific J. Chemical Engineering 5, 5, 701–707.Google Scholar
  36. Yao, S., Madokoro, K., Fushimi, C. and Fujioka, Y. (2007). Experimental investigation on diesel PM removal using uneven DBD reactors. AIChE Journal 53, 7, 1891–1897.CrossRefGoogle Scholar
  37. Ye, D., Gao, D., Yu, G., Shen, X. and Gu, F. (2005). An investigation of the treatment of particulate matter from gasoline engine exhaust using non-thermal plasma. J. Hazardous Materials 127, 1–3, 149-155.CrossRefGoogle Scholar
  38. Yoshida, K., Kuwahara, T., Kuroki, T. and Okubo, M. (2012). Diesel NOx aftertreatment by combined process using temperature swing adsorption, NOx reduction by nonthermal plasma, and NOx recirculation: Improvement of the recirculation process. J. Hazardous Materials, 231-232, 18–25.CrossRefGoogle Scholar
  39. Yu, H., Liang, X. and Shu, G. (2017). Numerical study of the early injection parameters on wall wetting characteristics of an HCCI diesel engine using early injection strategy. Int. J. Automotive Technology 18, 5, 759–768.CrossRefGoogle Scholar
  40. Yusop, A. F., Yasin, M. H. M., Mamat, R., Abdullah, A. A. and Aziz, A. (2013). PM emission of diesel engines using ester-ethanol-diesel blended fuel. Procedia Engineering, 53, 530–535.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoyu Pu
    • 1
  • Yixi Cai
    • 1
  • Yunxi Shi
    • 1
  • Jing Wang
    • 1
  • Linbo Gu
    • 1
  • Jing Tian
    • 1
  • Runlin Fan
    • 1
  1. 1.School of Automotive and Traffic EngineeringJiangsu UniversityZhenjiang, JiangsuChina

Personalised recommendations