International Journal of Automotive Technology

, Volume 18, Issue 6, pp 1047–1059

Lubricating performance of carbon nanotubes in internal combustion engines – engine test results for CNT enriched oil

  • Jarosław Kałużny
  • Agnieszka Merkisz-Guranowska
  • Michael Giersig
  • Krzysztof Kempa
Article
  • 53 Downloads

Abstract

The main purpose of this research is to reduce friction losses by adding carbon nanotubes to engine oil. Extremely favorable tribological properties of carbon nanotubes have been extensively studied on the microscopic scale and using tribometers, have not yet been verified in the engine. Enriching oil with nanotubes can lead to significant, exceeding 7 %, reduction in the motoring torque of the engine at low crankshaft rotational speed. The phenomena associated with the dispersion of carbon nanotubes in the engine are stated and discussed. It has been shown that the oil shear during normal operation of the engine can effectively improve the dispersion of nanotubes. At the same time the oil filtration system removes agglomerates of nanotubes very quickly.

Key words

Combustion engines Carbon nanotubes Engine oil Friction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backhaus, R. (2009). Kolben aus Stahl für Pkw-Dieselmotoren. MTZ -Motortechnische Zeitschrift 70, 12, 902–906.CrossRefGoogle Scholar
  2. Baughman, R. H., Zakhidov, A. A. and de Heer, W. A. (2002). Carbon Nanotubes–The route toward applications. Science 297, 5582, 787–792.CrossRefGoogle Scholar
  3. Bhushan, B. (2010). Springer Handbook of Nanotechnology. 3rd edn. Springer-Verlag, Berlin-Heidelberg. Heidelberg, Germany.CrossRefGoogle Scholar
  4. Bossdorf-Zimmer, B., Krinke, S. and Lösche-Ter Horst, T. (2012). Die well-to-wheel-Analyse Umwelteigenschaften mess-und planbar machen. MTZ -Motortechnische Zeitschrift 73, 2, 106–111.CrossRefGoogle Scholar
  5. Chauveau, V. (2010). Le Pouvoir Lubrifiant des Nanotubes de Carbonne. Ph. D. Dissertation. L’Ecole Centrale de Lyon. Lyon, France.Google Scholar
  6. Chaveau, V., Mazuyer, D., Dassenoy, F. and Cayer-Barrioz, J. (2012). In situ film-forming and friction-reduction mechanisms for carbon-nanotube dispersions in lubrication. Tribology Letters 47, 3, 467–480.CrossRefGoogle Scholar
  7. Cook, E. H., Buehler, M. J. and Spakovszky, Z. S. (2013). Mechanism of friction in rotating carbon nanotube bearings. J. Mechanics and Physics of Solids 61, 2, 652–673.CrossRefGoogle Scholar
  8. Cursaru, D. L., Andronescu, C., Pirvu, C. and Ripeanu, R. (2012). The efficiency of Co-based single-wall carbon nanotubes (SWNTs) as an AW/EP additive for mineral base oils. Wear, 290-291, 133–139.CrossRefGoogle Scholar
  9. de Volder, M. F. L., Tawfick, S. H., Baughman, R. H. and Hart, A. J. (2013). Carbon nanotubes: Present and future commercial applications. Science 339, 6119, 535–539.CrossRefGoogle Scholar
  10. Deuss, T., Ehnis, H., Basset, M. and Bisordi, A. (2011a). Reibleistungsmessungen am Befeuerten Dieselmotor–Zyklusrelevante CO2-Ersparnis. MTZ -Motortechnische Zeitschrift 72, 12, 954–959.CrossRefGoogle Scholar
  11. Deuss, T., Ehnis, H., Freier, R. and Künzel, R. (2010). Reibleistungsmessungen am Befeuerten Dieselmotor–Potenziale der Kolbengruppe. MTZ -Motortechnische Zeitschrift 71, 5, 326–330.CrossRefGoogle Scholar
  12. Deuss, T., Ehnis, H., Rose, R. and Kü nzel, R. (2011b). Reibleistungsmessungen am Befeuerten Dieselmotor–Einfluss von Kolbenschaftbeschichtungen. MTZ Motortechnische Zeitschrift 72, 4, 272–277.CrossRefGoogle Scholar
  13. Dikio, E. D. (2011). Morphological characterization of soot from the atmospheric combustion of diesel fuel. Int. J. Electrochemical Science 6, 6, 2214–2222.Google Scholar
  14. Dörnenburg, F., Lades, K. and Kenningley, S. (2010). Neue Technik für Höhere Warmfestigkeit von Aluminiumkolben. MTZ -Motortechnische Zeitschrift 71, 4, 246–249.CrossRefGoogle Scholar
  15. Ernst, C., Eckstein, L., Olschewski, I. and Harter, C. (2014). CO2-Emissionsreduktion bei PKW und Leichten Nutzfahrzeugen nach 2020. Final Report BMWi Project No. 123320.Google Scholar
  16. Ettefaghi, E., Ahmadi, H., Rashidi, A., Nouralishahi, A. and Mohtasebi, S. S. (2013). Preparation and properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int. Communications in Heat and Mass Transfer, 46, 142–147.CrossRefGoogle Scholar
  17. FIAT 1.3 Multijet Engine (2016). https://en.wikipedia.org/wiki/JTD_engine#1.3_MultijetGoogle Scholar
  18. Golloch, R. (2005). Downsizing bei Verbrennungsmotoren. Springer-Verlag Berlin Heidelberg. Heidelberg, Germany.Google Scholar
  19. Habeeb, J. J. and Bogovic, C. N. (2013). Reduced Friction Lubricating Oils Containing Functionalized Nanomaterials. Patent No. US 8435931 B2.Google Scholar
  20. Hadler, J., Blumensaat, K., Nederkorn, W., Kracke, A. and Urban, P. (2004). Der Neue Fünfzylinder-Dieselmotor von Volkswagen. MTZ -Motortechnische Zeitschrift 65, 1, 8–19.CrossRefGoogle Scholar
  21. Hadler, J., Lensch-Franzen, C., Kirsten, K., Kronstedt, M., Guhr, C., Witteman, M. and Kehrwald, B. (2016). New aspects for a tribologically induced CO2 and emission reduction. Internationales Wiener Motorensymposium, 37.Google Scholar
  22. HBM T40B 1 kNm Torque Measuring Flange (2016). http://www.hbm.com/en/3004/t40b-torque-transducerwith-a-rotational-speed-measuring-systemGoogle Scholar
  23. Holmberg, K., Andersson, P. and Erdemir, A. (2012). Global energy consumption due to friction in passenger cars. Tribology International, 47, 221–234.CrossRefGoogle Scholar
  24. Huang, Y. Y. and Terentjev, E. M. (2012). Dispersion of carbon nanotubes: Mixing, sonication, stabilization and composite properties. Polymers 4, 1, 275–295.CrossRefGoogle Scholar
  25. Hwang, Y., Lee, C., Choi, Y., Cheong, S., Kim, D., Lee, K., Lee, J. and Kim, H. (2011). Effect of size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. J. Mechanical Science and Technology 25, 11, 2853–2857.CrossRefGoogle Scholar
  26. Jeong, N. T., Yang, S. M., Kim, K. S., Wang, M. S., Kim, H. S. and Suh, M. W. (2016). Urban driving cycle for performance evaluation of electric vehicles. Int. J. Automotive Technology 17, 1, 145–151.CrossRefGoogle Scholar
  27. Kalin, M., Kogovsek, J. and Remskar, M. (2012). Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear, 280-281, 36–45.CrossRefGoogle Scholar
  28. Kaluzny, J. (2013). Experimental Applications of Carbon Nanotubes in the Construction of Internal Combustion Engines. Wydawnictwo Politechniki Poznanskiej, Poznan. Publishing House of Poznan University of Technology. Poznan, Poland.Google Scholar
  29. Kogovšek, J., Remškar, M., Mrzel, A. and Kalin, M. (2013). Influence of surface roughness and running-in on the lubrication of steel surfaces with oil containing MoS2 nanotubes in all lubrication regimes. Tribology International, 61, 40–47.CrossRefGoogle Scholar
  30. Kotnarowski, A. (2009). Konstytuowanie Warstw Ochronnych z Nanoproszków Miedzi i Molibdenu w Procesach Tribologicznych. Publishing House of Radom University of Technology. Radom, Poland. KTR 42/1000Google Scholar
  31. Torque Measuring Shaft (2016). http://ktrinternational.comGoogle Scholar
  32. Lagally, C. D., Reynolds, C. C. O., Grieshop, A. P., Kandlikar, M. and Rogak, S. N. (2012). Carbon nanotube and fullerene emissions from spark-ignited engines. Aerosol Science and Technology 46, 2, 156–164.CrossRefGoogle Scholar
  33. Lee, H. and Choi, H. (2016). Analysis of vehicle fuel efficiency and survival patterns for the prediction of total energy consumption from ground transportation in Korea. Int. J. Automotive Technology 17, 4, 605–616.CrossRefGoogle Scholar
  34. Liu, G., Li, X., Qin, B., Xing, D., Guo, Y. and Fan, R. (2004). Investigation of the mending effect and mechanism of copper nanoparticles on a tribology stressed surface. Tribology Letters 17, 4, 961–966.CrossRefGoogle Scholar
  35. Loiselle-Lapointe, A., Conde, A. J. and Ribberink, H. (2017). Chevrolet volt on-road test programs in canada part 1: Effects of drive cycle, ambient temperature and accessory usage on energy consumption and all-electric range. Int. J. Automotive Technology 18, 1, 103–115.CrossRefGoogle Scholar
  36. Lucas, M., Palaci, I., Riedo, E., Zhang, X. and Tosatti, E. (2009). Hindered rolling and friction anisotropy in supported carbon nanotubes. Nature Materials, 8, 876–881.CrossRefGoogle Scholar
  37. Manoj, B., Sreelaksmi, S., Mohan, A. N. and Kunjomana, A. G. (2012). Characterization of Diesel soot from the combustion in engine by X-ray and spectroscopic techniques. Int. J. Electrochemical Science, 7, 3215–3221.Google Scholar
  38. NanoLab Inc. (2016). http://www.nano-lab.comGoogle Scholar
  39. Ottliczky, E., Voigt, M., Weimar, H. J. and Weiss, E. (2011). Stahlkolben für PKW-Dieselmotoren. MTZ -Motortechnische Zeitschrift 72, 10, 728–735.CrossRefGoogle Scholar
  40. Phan, N. M., Bui, H. T., Nguyen, M. H. and Phan, H. K. (2014). Carbon-nanotube-based liquids: A new class of nanomaterials and their applications. Advances in Natural Sciences: Nanoscience and Nanotechnology 5, 1, 015014.Google Scholar
  41. Pottuz, L. J., Dassenoy, F., Vacher, B., Martin, J. M. and Mieno, T. (2004). Ultralow friction and wear behavior of Ni/Y-based single wall carbon nanotubes (SWNTs). Tribology International 37, 11–12, 1013–1018.CrossRefGoogle Scholar
  42. Servantir, J. and Gaspard, P. (2006). Rotational dynamics and friction in double-walled carbon nanotubes. Physical Review Letters 97, 18, 186106.CrossRefGoogle Scholar
  43. Spicher, U. (2012). Analyse der Effizienz zukünftiger Antriebssysteme für die individuelle Mobilität. MTZ -Motortechnische Zeitschrift 73, 2, 98–105.CrossRefGoogle Scholar
  44. Tao, X., Jiazheng, Z. and Kang, X. (1996). The ball-bearing effect of diamond nanoparticles as an oil additive. J. Physics D: Applied Physics 29, 11, 2932–2937.CrossRefGoogle Scholar
  45. Tung, S. C. and McMillan, M. L. (2004). Automotive tribology overview of current advances and challenges for the future. Tribology International 37, 7, 517–536.CrossRefGoogle Scholar
  46. Vander Wall, R. L., Miyoshi, K., Street, K. W., Tomasek, A. J., Peng, H., Liu, Y., Margrave, J. L. and Khabashesku, V. N. (2005). Friction properties of surface-fluorinated carbon nanotubes. Wear 259, 1–6, 738–743.CrossRefGoogle Scholar
  47. Volkswagen Selbststudienprogramm 305 (2003). Der Neue 2.5 l R5 TDI Motor. Volkswagen AG, Wolfsburg.Google Scholar
  48. Xie, H., Lee, H., Youn, W. and Choi, M. (2003). Nanofluid containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. Applied Physics 94, 8, 4967–4971.CrossRefGoogle Scholar
  49. Yan, Y., Miao, J., Yang, Z., Xiao, F. X., Yang, H. B., Liu, B. and Yang, Y. (2015). Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chemical Society Reviews, 44, 3295–3346.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jarosław Kałużny
    • 1
  • Agnieszka Merkisz-Guranowska
    • 1
  • Michael Giersig
    • 2
  • Krzysztof Kempa
    • 3
  1. 1.Faculty of Machines and TransportPoznan University of TechnologyPoznanPoland
  2. 2.Faculty of ArchitecturePoznan University of TechnologyPoznanPoland
  3. 3.Department of PhysicsBoston CollegeChestnut HillUSA

Personalised recommendations