International Journal of Automotive Technology

, Volume 18, Issue 6, pp 1027–1035 | Cite as

Coupled thermo-mechanical analysis and shape optimization for reducing uneven wear of brake pads

  • Myeong Jae Han
  • Chul Hyung Lee
  • Tae Won Park
  • Jung Min Park
  • Sung Min Son


In vehicle braking systems, the non-uniform contact pressure distribution on the brake pad is a major cause of uneven wear. The experimental approach of the wear phenomenon is the time consuming and costly. For this reason, a threedimensional finite element (FE) model of a brake system is presented for numerical simulation in this paper. A coupled thermo-mechanical analysis is carried out to confirm the non-uniform contact pressure distribution. A correlation between the non-uniform contact pressure and uneven wear is confirmed by measuring the amount of wear in the brake pad. The shape optimization of the brake pad is performed to reduce the uneven wear. In addition, the simulation results, such as natural frequency and temperature, are compared to experimental results.

Key words

Coupled thermo-mechanical analysis Contact pressure distribution Uneven wear Shape optimization Brake dynamometer test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abubakar, A. R. and Ouyang, H. (2008). Wear prediction of friction material and brake squeal using the finite element method. Wear 264, 11, 1069–1076.CrossRefGoogle Scholar
  2. Baillet, L., Linck, V., D’Errico, S., Laulagnet, B. and Berthier, Y. (2005). Finite element simulation of dynamic instabilities in frictional sliding contact. J. Tribology 127, 3, 625–657.CrossRefGoogle Scholar
  3. Frank, P. I., David, P. D., Thedore, L. B. and Adrienne, S. L. (2013). Foundations of Heat Transfer. 6th edn. John Wiley & Sons. New York, USA.Google Scholar
  4. Gao, C. H., Huang, J. M., Lin, X. Z. and Tang, X. S. (2006). Stress analysis of thermal fatigue fracture of brake disks based on thermomechanical coupling. J. Tribology 129, 3, 536–543.CrossRefGoogle Scholar
  5. Hassan, M. Z., Brooks, P. C. and Barton, D. C. (2009). A predictive tool to evaluate disk brake squeal using a fully coupled thermo-mechanical finite element model. Int. J. Vehicle Design 51, 1–2, 124–142.CrossRefGoogle Scholar
  6. JASO C406 2000 (2016). Scholar
  7. Jung, S. P., Park, T. W., Chai, J. B. and Chung, W. S. (2011). Thermo-mechanical finite element analysis of hot judder phenomenon of a ventilated disc brake system. Int. J. Precision Engineering and Manufacturing 12, 5, 821–828.CrossRefGoogle Scholar
  8. Lee, K. J. and Barber, J. R. (1994). An experimental investigation of frictionally-excited thermoelastic instability in automotive disk brakes under a drag brake application. J. Tribology 116, 3, 409–414.CrossRefGoogle Scholar
  9. Limpert, R. (1999). Brake Design and Safety. 2nd edn. SAE International. Warrendale, Pennsylvania, USA.Google Scholar
  10. Meziane, A., D’Errico, S., Baillet, L. and Laulagnet, B. (2007). Instabilities generated by friction in a pad-disc system during the braking process. Tribology Int. 40, 7, 1127–1134.CrossRefGoogle Scholar
  11. Myers, R. H. and Montgomery, D. C. (2002). Response Surface Methodology. 2nd edn. John Wiley & Sons. New York, USA.zbMATHGoogle Scholar
  12. Pantuso, D., Bathe, K. J. and Bouzinov, P. A. (2000). A finite procedure for the analysis of thermal-mechanical solids in contact. Computers & Structures 75, 6, 551–573.CrossRefGoogle Scholar
  13. Parker, R. C. and Marshall, P. R. (1948). The measurement of the temperature of sliding surfaces with particular reference to railway blocks. Proc. Institute of Mechanical Engineers 158, 1, 209–229.CrossRefGoogle Scholar
  14. Plackett, R. and Burman, J. (1946). The design of optimum multifactorial experiments. Biometrika 33, 4, 305–325.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Söderberg, A. and Andersson, S. (2009). Simulation of wear and contact pressure distribution at the pad-to-rotor interface in a disc brake using general purpose finite element analysis software. Wear 267, 12, 2243–2251.CrossRefGoogle Scholar
  16. Thomas, J. M., Steven, C. N. et al. (2002). Thermal cracking in disc brakes. Engineering Failure Analysis 9, 1, 63–76.MathSciNetCrossRefGoogle Scholar
  17. Wu, S. C., Zhang, S. Q. and Xu, Z. W. (2016). Thermal crack growth-based fatigue life prediction due to braking for a high-speed railway brake disc. Int. J. Fatigue, 87, 359–369.CrossRefGoogle Scholar
  18. Yevtushenko, A. and Grzes, P. (2011). Finite element analysis of heat partition in a pad/disc brake system. Numerical Heat Transfer 59, 7, 521–542.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Myeong Jae Han
    • 1
  • Chul Hyung Lee
    • 1
  • Tae Won Park
    • 2
  • Jung Min Park
    • 3
  • Sung Min Son
    • 4
  1. 1.School of Mechanical EngineeringAjou UniversityGyeonggiKorea
  2. 2.Department of Mechanical EngineeringAjou UniversityGyeonggiKorea
  3. 3.Extreme Technology R&D CenterKorea Automotive Technology InstituteChungnamKorea
  4. 4.Automotive Technology CenterE. S. BrakeGyeonggiKorea

Personalised recommendations