Demonstration of vehicular visible light communication based on LED headlamp

  • J.-H. Yoo
  • J.-S. Jang
  • J. K. Kwon
  • H.-C. Kim
  • D.-W. Song
  • S.-Y. Jung
Article

Abstract

With the emergence of LED lighting, IT convergence technology using the visible spectrum of LEDs, such as Visible Light Communication (VLC), has been highlighted. Among the many VLC applications, vehicular VLCs based on LED headlamps and transportation lighting infrastructure, such as street lamps, traffic lights, etc., are considered good alternatives for Intelligent Transportation Systems (ITS) or Active Safety applications. This paper introduces a demonstration system of vehicle-to-vehicle (V2V) VLC based on LED headlamps. By applying an inverse 4-PPM modulation scheme satisfying a 75 % dimming level under the light distribution regulation of LED headlamp, the proposed system showed its capability for V2V VLC with a 10 kbps data rate for more than 30 m under day time conditions. By measuring the BER performance according to distance, outdoor V2V VLC was possible for more than 30 m even in the day time.

Key words

Light emitting diode (LED) LED headlamp Visible light communication (VLC) Intelligent transportation systems (ITS) Vehicle-to-vehicle (V2V) IT convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akanegawa, M., Tanaka, Y. and Nakagawa, M. (2001). Basic study on traffic information system using LED traffic lights. IEEE Trans. Intell. Transp. Syst. 2, 4, 197–203.CrossRefGoogle Scholar
  2. Azhar, A. H., Tran, T. and O’Brien, D. (2013). A gigabit/s indoor wireless transmission using MIMO OFDM visible-light communications. IEEE Photonics Technology Letters 25, 2, 171–174.CrossRefGoogle Scholar
  3. BP500 Green-Blue Bandpass (2003). http://midopt.com/ filters/bp500Google Scholar
  4. BPW20RF (2011). http://www.vishay.com/docs/81570/ bpw20rf.pdfGoogle Scholar
  5. Choi, Y. H., Park, I. H., Kim, Y. H. and Kim, J. Y. (2012). Novel LBS technique based on visible light communications. Proc. IEEE Int. Conf. Consumer Electronics (ICCE), 576–577.Google Scholar
  6. Dupuis, R. D. and Krames, M. R. (2008). History, development, and applications of high-brightness visible light-emitting diodes. J. Lightwave Technology 26, 9, 1154–1171.CrossRefGoogle Scholar
  7. Grobe, L., Paraskevopoulos, A., Hilt, J., Schulz, D., Lassak, F., Hartlieb, F., Kottke, C., Jungnickel, V. and Langer, K.-D. (2013). High-speed visible light communication systems. IEEE Commun. Mag. 51, 12, 60–66.CrossRefGoogle Scholar
  8. Haigh, P. A., Ghassemlooy, Z., Rajbhandari, S. and Papakonstantinou, I. (2013). Visible light communications using organic light emitting diodes. IEEE Commun. Mag. 51, 8, 148–154.CrossRefGoogle Scholar
  9. IEEE Standard (2011). IEEE Standard for Local Metropolitan Area Networks-Part 15.7: Short-range Wireless Optical Communication Using Visible Light, 802.15.7. IEEE Std 802.15.7.Google Scholar
  10. Jovicic, A., Li, J. and Richardson, T. (2013). Visible light communication: Opportunities, challenges and the path to market. IEEE Commun. Mag. 51, 12, 26–32.CrossRefGoogle Scholar
  11. Kim, D.-R., Yang, S.-H., Kim, H.-S., Son, Y.-H. and Han, S.-K. (2012). Outdoor visible light communication for inter-vehicle communication using controller area network. Proc. Int. Conf. Communications and Electronics, 31–34.Google Scholar
  12. Kumar, N., Terra, D., Lourenco, N., Alves, L. N. and Aguiar, R. L. (2011). Visible light communication for intelligent transportation in road safety applications. Proc. 7th Int. IWCMC, 1513–1518.Google Scholar
  13. Lee, S. J., Kown, J. K., Jung, S. Y. and Kown, Y. H. (2012)a). Evaluation of visible light communication channel delay profiles for automotive applications. EURASIP J. Wireless Commun. and Networking 2012, 370, 1–8.Google Scholar
  14. Lee, S. J., Kown, J. K., Jung, S. Y. and Kown, Y. H. (2012)b). Simulation modeling of visible light communication channel for automotive applications. Proc. 15th Int. IEEE Conf. ITSC, 463–468.Google Scholar
  15. Moon, H.-D. and Jung, S.-Y. (2012). Multi-coded variable PPM for high data rate visible light communications. J. Optical Society of Korea 16, 2, 107–114.CrossRefGoogle Scholar
  16. Nagura, T., Yamazato, T., Katayama, M., Yendo, T., Fujii, T. and Okada, H. (2010). Improved decoding methods of visible light communication system for ITS using LED array and high-speed camera. Proc. IEEE Vehicular Technology Conf., 1–5.Google Scholar
  17. Osram Ostar Headlamp (2003). http://www.osram-os.com/ osram_os/en/products/product-catalog/led-lightemitting- diodes/osram-ostar/osram-ostar-headlamp/leuw- d1w4-01/index.jspGoogle Scholar
  18. Pang, G. K. H. and Liu, H. H. S. (2001). LED location beacon system based on processing of digital images. IEEE Trans. Intell. Transp. Syst. 2, 3, 135–150.CrossRefGoogle Scholar
  19. Premachandra, H. C. N., Yendo, T., Tehrani, M. P., Yamazato, T., Okada, H., Fujii, T. and Tanimoto, M. (2010). High-speed-camera image processing based LED traffic light detection for road-to-vehicle visible light communication. Proc. IEEE Veh. Symp., 793–798.Google Scholar
  20. Takai, I., Harada, T., Andoh, M., Yasutomi, K., Kagawa, K. and Kawahito, S. (2014). Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver. IEEE Photonics J. 6, 5, 1–14.CrossRefGoogle Scholar
  21. Takai, I., Ito, S., Yasutomi, K., Kagawa, K., Andoh, M. and Kawahito, S. (2013). LED and CMOS image sensor based optical wireless communication system for automotive applications. IEEE Photonics J. 5, 5, 1–19.CrossRefGoogle Scholar
  22. Yamazato, T., Takai, I., Okada, H., Fujii, T., Yendo, T., Arai, S., Andoh, M., Harada, T., Yasutomi, K., Kagawa, K. and Kawahito, S. (2014). Image-sensor-based visible light communication for automotive applications. IEEE Comm. Mag. 52, 7, 88–97.CrossRefGoogle Scholar
  23. Yoo, J.-H. and Jung, S.-Y. (2013). Modeling and analysis of variable PPM for visible light communications. EURASIP J. Wireless Commun. and Networking 2013, 134, 1–6.Google Scholar
  24. Yu, S.-H., Shih, O., Tsai, H.-M., Wisitpongphan, N. and Roberts, R. (2013). Smart automotive lighting for vehicle safety. IEEE Commun. Mag. 51, 12, 50–59.CrossRefGoogle Scholar
  25. Zhang, D.-F., Zhu, Y.-J. and Zhang, Y.-Y. (2013). Multi- LED phase-shifted OOK modulation based visible light communication systems. IEEE Photonics Technology Letters 25, 23, 2251–2254.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J.-H. Yoo
    • 1
  • J.-S. Jang
    • 2
  • J. K. Kwon
    • 2
  • H.-C. Kim
    • 2
  • D.-W. Song
    • 2
  • S.-Y. Jung
    • 2
  1. 1.Vehicle Safety R&D CenterKorea Automotive Technology InstituteDaeguKorea
  2. 2.Department of Electronic EngineeringYeungnam UniversityGyeongbukKorea

Personalised recommendations