Advertisement

Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 1

  • C. L. Myung
  • A. Ko
  • S. ParkEmail author
Article

Abstract

This paper is review of the characterization of exhaust particles from state-of-the-art internal combustion engines. We primarily focus on identifying the physical and chemical properties of nano-particles, i.e., the concentration, size distribution, and particulate matter (PM) morphology. Stringent emissions regulations of the Euro 6 and the LEV III require a substantial reduction in the PM emissions from vehicles, and improvements in human health effects. Advances in powertrains with sophisticated engine control strategies and engine after-treatment technologies have significantly improved PM emission levels, motivating the development of new particle measurement instruments and chemical analysis procedures. In this paper, recent research trends are reviewed for physical and chemical PM characterization methods for gasoline and diesel fueled engines under various vehicle certification cycles and real-world driving conditions. The effects of engine technologies, fuels, and engine lubricant oils on exhaust PM morphology and compositions are also discussed.

Key Words

Particulate matter Gasoline direct injection Engine lubricant Filter regeneration PM morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albuquerque, P. C., Ávila, R. N., Zárante, P. H. and Sodré, J. R. (2011). Lubricating oil influence on exhaust hydrocarbon emissions from a gasoline fueled engine. Tribology Int., 44, 1796–1799.CrossRefGoogle Scholar
  2. Arsie, I., Iorio, S. D. and Vaccaro, S. (2013). Experimental investigation of the effects of AFR, spark advance and EGR on nanoparticle emissions in a PFI SI engine. J. Aerosol Sci., 64, 1–10.CrossRefGoogle Scholar
  3. Barone, T., Storey, J. M., Youngquist, A. D. and Szybist, J. P. (2012). An analysis of direct-injection spark-ignition (DISI) soot morphology. Atmos. Environ., 49, 268–294.CrossRefGoogle Scholar
  4. Basshuysen, R. (2009). Gasoline Engine with Direct Injection — Processes, Systems, Development, and Potential. 1st edn. Vieweg+Teubner. Wiesbaden.Google Scholar
  5. Beatrice, C., Iorio, S. D., Guido, C. and Napolitano, P. (2012). Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies. Experimental Thermal and Fluid Science, 39, 45–53.CrossRefGoogle Scholar
  6. Berndorfer, A., Breuer, S., Piock, W. and Bacho, P. V. (2013). Diffusion combustion phenomena in GDI engines caused by injection process. SAE Paper No. 2013-01-0261.CrossRefGoogle Scholar
  7. Bielaczyc, P., Klimkiewicz, D., Pajdowski, P., Szczotka, A. and Woodburn, J. (2013). A quantitative comparison of the particulate matter emissions from two Euro 5 vehicles (direct injection petrol & diesel). 17th ETH Conf. Combustion Generated Nanoparticles.Google Scholar
  8. Borge, P. (2013). Death by Diesel. Engine Technology International. UK.Google Scholar
  9. Brandenbergera, S., Mohra, M., Grobb, K. and Neukomb, H. P. (2005). Contribution of unburned lubricating oil and diesel fuel to particulate emission from passenger cars. Atmos. Environ., 39, 6985–6994.CrossRefGoogle Scholar
  10. Brijesh, P. and Sreedhara, S. (2013). Exhaust emissions and its control methods in compression ignition engines: A review. Int. J. Automotive Technology 14,2, 195–206.CrossRefGoogle Scholar
  11. Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci., 36, 896–932.CrossRefGoogle Scholar
  12. Bzdek, B. R., Pennington, R. and Johnston, M. V. (2012). Single particle chemical analysis of ambient ultrafine aerosol: A review. J. Aerosol Sci., 52, 109–120.CrossRefGoogle Scholar
  13. CARB (2010). Proposed amendments to California’s lowemission vehicle regulations — Particulate matter mass, ultrafine solid particle number, and black carbon emissions. Preliminary Discussion Paper.Google Scholar
  14. Carroll, J. L., Khalek, I. A., Smith, L. E., Fujita, E. and Zielinska, B. (2011). Collaborative lubricating oil study on emissions (CLOSE). NREL Report, NREL/SR-5400-52668.Google Scholar
  15. Carvalho, M. J., Seidl, P. R., Belchior, C. R. and Sodré, J. R. (2010). Lubricant viscosity and viscosity improver additive effects on diesel fuel economy. Tribology Int., 43, 2298–2302.CrossRefGoogle Scholar
  16. Choi, K., Kim, J., Myung, C. L., Lee, M., Kwon, S., Lee, Y. and Park, S. (2012). Effect of the mixture preparation on the nanoparticle characteristics of gasoline directinjection vehicles. J. Automobile Engineering 226,11, 1514–1524.CrossRefGoogle Scholar
  17. Choi, K., Kim, J., Ko, A., Myung, C. L., Park, S. and Lee, J. (2013). Size-resolved engine exhaust aerosol characteristics in a metal foam particulate filter for GDI light-duty vehicle. J. Aerosol Sci., 57, 54–70.CrossRefGoogle Scholar
  18. Choi, S. and Min, K. (2013). Analysis of the combustion and emissions of a diesel engine in early-injection, partially-premixed charge compression ignition regimes. J. Automobile Engineering 227,7, 939–950.CrossRefGoogle Scholar
  19. Dardiotis, C., Martini, G., Marotta, A. and Manfredi, U. (2013). Low-temperature cold-start gaseous emissions of late technology passenger cars. Applied Energy, 111, 468–478.CrossRefGoogle Scholar
  20. Delphi (2013). Worldwide Emissions Standards. www.delphi.com Google Scholar
  21. Denner, V. (2013). Shaping the future — Innovations for efficient mobility. 33rd Internationales Wiener Motorensymposium.Google Scholar
  22. Dong, L., Shu, G. and Liang, X. (2013). Effect of lubricating oil on the particle size distribution and total number concentration in a diesel engine. Fuel Processing Technology, 109, 78–83.CrossRefGoogle Scholar
  23. Duchaussoy, Y., Covin, B., Boccadoro, Y., Meurisse, O., Mercier, J. P. and Levasseur, D. (2011). The new RENAULT 1.2 GDI turbocharged engine. 20th Aachen Colloquium.Google Scholar
  24. Eastwood, P. (2008). Particulate Emissions from Vehicles. John Wiley & Sons Ltd. UK.Google Scholar
  25. Eiglmeier, C., Bauder, R., Fröhlich, A., Gabel, K., Helbig, J., Marckwardt, H. and Zülch, S. (2011). The new 3.0 litre V6 TDI engine with dual-stage turbocharging in the Audi A6 and A7. 20th Aachen Colloquium.Google Scholar
  26. Fan, Q., Bian, J., Lu, H., Li, L. and Deng, J. (2012). Effect of the fuel injection strategy on first-cycle firing and combustion characteristics during cold start in a TSDI gasoline engine. Int. J. Automotive Technology 13,4, 523–531.CrossRefGoogle Scholar
  27. Fraidl, G., Hollerer, P., Kapus, P. and Vidmar, K. (2012). Particulate number for EU6+ challenges and solutions. Advanced Emission Control Concepts for Gasoline Engines Conf.Google Scholar
  28. Fushimia, A., Saitoha, K., Fujitania, Y., Hasegawaa, S., Takahashid, K., Tanabea, K. and Kobayashia, S. (2011). Organic-rich nanoparticles (diameter: 10–30 nm) in diesel exhaust: Fuel and oil contribution based on chemical composition. Atmos. Environ., 45, 6326–6336.CrossRefGoogle Scholar
  29. Gaddam, C. and Vander Wal, R. L. (2013). Physical and chemical characterization of SIDI engine particulates. Combustion and Flame, 160, 2517–2528.CrossRefGoogle Scholar
  30. Giechaskiel, B., Mamakos, A., Andersson, J., Dilara, P., Martini, G., Schindler, W. and Bergmann, A. (2012). Measurement of automotive nonvolatile particle number emissions within the European legislative framework: A review. Aerosol Science and Technology, 46, 719–749.CrossRefGoogle Scholar
  31. Giechaskiel, B., Maricq, M., Ntziachristos, L., Dardiotis, C., Wang, X., Axamnn, H., Bergmann, A. and Schindler, W. (2014). Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. Aerosol Science and Technology, 67, 48–86.CrossRefGoogle Scholar
  32. Hassaneen, A. E., Samuel, S. and Whelan, I. (2011). Combustion instabilities and nanoparticles emission fluctuations in GDI spark ignition engine. Int. J. Automotive Technology 12,6, 787–794.CrossRefGoogle Scholar
  33. Hoshino, K., Hirata, M., Kurihara, I. and Tekeshima, S. (2005). Effects of engine oil composition on diesel particulate filter. JSAE Paper No. 20055128.CrossRefGoogle Scholar
  34. Hwang, I., Choi, K., Kim, J., Myung, C. L. and Park, S. (2012). Experimental evaluation of combustion phenomena in and nanoparticle emissions from a sidemounted direct-injection engine with gasoline and liquid-phase liquefied petroleum gas fuel. J. Automobile Engineering 226,1, 112–122.CrossRefGoogle Scholar
  35. Inagaki, H. and Kondo, T. (2009). Influences of lubricating oil consumption on PM emission in gasoline engine. JSAE Paper No. 20095284.Google Scholar
  36. Johnson, K. C., Thomas, D., Durbin, T. G., Jung, H. Cocker, D. R., Bishnu, D. and Giannelli, R. (2011). Quantifying in-use PM measurements for heavy duty diesel vehicles. Environ. Sci. Technol., 45, 6073–6079.CrossRefGoogle Scholar
  37. Jung, H., Kittelson, D. B. and Zachariah, M. R. (2003). The influence of engine lubricating oil on diesel nanoparticle emissions and kinetics of oxidation. SAE Paper No. 2003-01-3170.CrossRefGoogle Scholar
  38. Kern, B., Spiess, S. and Richter, J. M. (2013). The challenge of emission legislation EU6c for gasoline-DIengines, strategies meeting the new demands and preparing for extended test conditions. 22nd Aachen Colloquium.Google Scholar
  39. Kim, H. J., Han, B., Cho, G. B., Kim, Y. J., Yoo, J. S. and Oda, T. (2013a) Collection performance of an electrostatic filtration system combined with a metallic flow-through filter for ultrafine diesel particulate matters. Int. J. Automotive Technology 14,3, 489–497.CrossRefGoogle Scholar
  40. Kim, Y., Kim, Y. H., Jun, S. Y., Lee, K. H., Rew, S. H., Lee, D. and Park, S. (2013b). Strategies for particle emissions reduction from GDI engines. SAE Paper No. 2013-01-1556.CrossRefGoogle Scholar
  41. Kim, J., Choi, K., Myung, C. L. and Park. S. (2013c). Experimental evaluation of engine control strategy on the time resolved THC and nano-particle emission characteristics of liquid phase LPG direct injection (LPG-DI) engine during the cold start. Fuel Processing Technology, 106, 166–173.CrossRefGoogle Scholar
  42. Kirchner, U., Gallus, J., Börensen, C. and Vogt, R. (2013). Particle number emission of light-duty vehicles during real-world driving. 17th ETH Conf. Combustion Generated Nanoparticles.Google Scholar
  43. Ko, A., Kim, J., Choi, K., Myung, C. L., Kwon, S., Kim, K., Cho, Y. J. and Park, S. (2012). Experimental study of particle emission characteristics of a heavy-duty diesel engine and effects of after-treatment systems: Selective catalytic reduction, diesel particulate filter, and diesel particulate and NOx reduction. J. Automobile Engineering 226,12, 1689–1696.CrossRefGoogle Scholar
  44. Konstandopoulos, A. G. and Papaioannou, E. (2008). Update on the science and technology of diesel particulate filters. KONA Powder and Particle, 26, 36–65.Google Scholar
  45. Kousoulidou, M., Fontaras, G., Ntziachristos, L., Bonnel, P., Samaras, Z. and Dilara, P. (2013). Use of portable emissions measurement system (PEMS) for the development and validation of passenger car emission factors. Atmos. Environ., 64, 329–338.CrossRefGoogle Scholar
  46. Kufferath, A., Berns, S., Hammer, J., Busch, R., Frank, M. and Storch, A. (2012). The EU6 challenge at GDI-Assessment of feasible system solutions. 33 rd Internationales Wiener Motorensymposium.Google Scholar
  47. La Rocca, A., Shayler, P. J. and Fay, M. W. (2013). Nanoparticle characteristics of exhaust and soot-in-oil from a light duty diesel engine. 17th ETH Conf. Combustion Generated Nanoparticles.Google Scholar
  48. Lee, S., Cho, Y., Song, M., Kim, H., Park, J. and Baik, D. (2012). Experimental study on the characteristics of nano-particle emissions from a heavy-duty diesel engine using a Urea-SCR system. Int. J. Automotive Technology 13,3, 355–363.CrossRefGoogle Scholar
  49. Lee, D., Choi, S. C. and Lee, C. S. (2013a). Impact of SME blended fuel combustion on soot morphological characteristics in a diesel engine. Int. J. Automotive Technology 14,5, 757–762.CrossRefMathSciNetGoogle Scholar
  50. Lee, J., Choi, S., Kim, H., Kim, D., Choi, H. and Min, K. (2013b). Reduction of emissions with propane addition to a diesel engine. Int. J. Automotive Technology 14,4, 551–558.CrossRefGoogle Scholar
  51. Lee, J., Hong, K., Choi, S., Yu, S., Choi, H. and Min, K. (2013c). Comparison of the effects of multiple injection strategy on the emissions between moderate and heavy EGR rate conditions: Part 1-pilot injections. J. Mechanical Science and Technology 27,4, 1135–1141.CrossRefGoogle Scholar
  52. Liati, A. and Eggenschwiler, P. D. (2010). Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, microand nano-scales. Combustion and Flame, 157, 1658–1670.CrossRefGoogle Scholar
  53. Liati, A., Eggenschwiler, P. D., Gubler, E. M., Schreiber, D. and Aguirre, M. (2012). Investigation of diesel ash particulate matter: A scanning electron microscope and transmission electron microscope study. Atmos. Environ., 49, 391–402.CrossRefGoogle Scholar
  54. Lu, T., Huang, Z., Cheng, C. S. and Ma, J. (2012). Size distribution of EC, OC and particle-phase PAHs emissions from a diesel engine fueled with three fuels. Science of the Total Environment, 438, 33–41.CrossRefGoogle Scholar
  55. Mamakos, A., Martini, G., Dilara, P. and Drossinos, Y. (2011). Feasibility of Introducing Particulate Filters on Gasoline Direct Injection Vehicles. JRC Report, EUR 25297 EN.Google Scholar
  56. Mamakos, A., Bonnel, P., Perujo, A. and Carriero, M. (2013a). Assessment of portable emission measurement systems (PEMS) for heavy-duty diesel engines with respect to particulate matter. J. Aerosol Sci., 57, 54–70.CrossRefGoogle Scholar
  57. Mamakos, A., Martini, G. and Manfredi, U. (2013b). Assessment of the legislated particle number measurement procedure for a Euro 5 and a Euro 6 compliant diesel passenger cars under regulated and unregulated conditions. J. Aerosol Sci., 55, 31–47.CrossRefGoogle Scholar
  58. Maricq, M. M. (2007). Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci., 38, 1079–1118.CrossRefGoogle Scholar
  59. Mock, P., German, J., Bandivadekar, A., Riemersma, I., Ligterink, N. and Lambrecht, U. (2013). A comparison of official and ‘real-world’ fuel consumption and CO2 values for cars in Europe and the United States. ICCT, White Paper.Google Scholar
  60. Momenimovahed, A., Olfert, J. S., Checkel, M. D., Pathak, S., Sood, V., Robindro, L., Singal, K., Jain, A. K. and Garg, O. (2013). Effect of fuel choice on nanoparticle emission factors in LPG-gasoline bi-fuel vehicles. Int. J. Automotive Technology 14,1, 111.CrossRefGoogle Scholar
  61. Myung, C. L., Choi, K., Kim, J., Lim, Y., Lee, J. and Park, S (2012a). Comparative study of regulated and unregulated toxic emissions characteristics from a spark ignition direct injection light-duty vehicle fueled with gasoline and liquid phase LPG (liquefied petroleum gas). Energy, 44, 189–196.CrossRefGoogle Scholar
  62. Myung, C. L., Kim, J., Choi, K., Hwang, I. and Park, S. (2012b). Comparative study of engine control strategies for particulate emissions from direct injection light-duty vehicle fueled with gasoline and liquid phase liquefied petroleum gas (LPG). Fuel, 94, 348–355.CrossRefGoogle Scholar
  63. Myung, C. L., Ko, A., Kim, J., Choi, K., Kwon, S. and Park, S. (2013). Specific engine performance and gaseous emissions characteristics of European test cycle and worldwide harmonized driving cycle for a heavyduty diesel engine. J. Mechanical Science and Technology 27,12, 3893–3902.CrossRefGoogle Scholar
  64. Myung, C. L., Ko, A., Lim, Y., Kim, S., Lee, J., Choi, K. and Park, S. (2014). Mobile source air toxic emissions from direct injection spark ignition gasoline and LPG passenger car under various in-use vehicle driving modes in Korea. Fuel Processing Technology, 119, 19–31.CrossRefGoogle Scholar
  65. Myung, C. L. and Park, S. (2012). Exhaust nanoparticle emissions from internal combustion engines: A review. Int. J. Automotive Technology 13,1, 9–22.CrossRefGoogle Scholar
  66. Neußer, H. J., Kahrstedt, J., Jelden, H., Dorenkamp, R. and Düsterdiek, T. (2013). The EU6 engines based on the modular diesel system of Volkswagen-Innovative exhaust gas purification near the engine for further minimization of NOx and CO2. 34th Internationales Wiener Motorensymposium.Google Scholar
  67. Noël, L., Hayrault, P., Leblanc, M., Raux, S. and Jeuland, N. (2013). Detailed characterization of nanoparticles emitted by spark ignition direct injection engines. 17 th ETH Conf. Combustion Generated Nanoparticles.Google Scholar
  68. Ntziachristos, L., Fragkiadoulakis, P., Samaras, Z., Janka, K. and Tikkanen, J. (2011). Exhaust particle sensor for OBD application. SAE Paper No. 2011-01-0626.CrossRefGoogle Scholar
  69. Ohm, I. Y. (2013). Effects of intake valve angle on combustion characteristic in an SI engine. Int. J. Automotive Technology 14,4, 529–537.CrossRefGoogle Scholar
  70. Omae, K., Tomoda, T., Hashimoto, H., Matsumoto, S., Tanaka, A. and Uchiyama, K. (2012). Innovative fuel injection system for future Toyota diesel passenger cars. 33rd Internationales Wiener Motorensymposium.Google Scholar
  71. Opitza, B., Drochner, A., Vogelb, H. and Votsmeiera, M. (2013). An experimental and simulation study on the cold start behaviour of particulate filters with wall integrated three way catalyst. Applied Catalysis B: Environmental, 144, 203–215.CrossRefGoogle Scholar
  72. Paul, B., Datta, A. and Sahab, A. (2013). Optical characterization of nano-sized organic carbon particles emitted from a small gasoline engine. Particuology, 11, 249–255.CrossRefGoogle Scholar
  73. Rahman, S. M., Masjuki, H. H., Kalam, M. A., Abedin, M. J., Sanjid, A. and Sajjad, H. (2013). Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles — A review. Energy Conversion and Management, 74, 171–182.CrossRefGoogle Scholar
  74. Rakopoulos, C. and Giakoumis, E. (2009). Diesel Engine Transient Operation — Principles of Operation and Simulation Analysis. Springer. UK.Google Scholar
  75. Richter, J. M., Klingmann, R., Spiess, S. and Wong, K. F. (2012). Application of catalyzed gasoline particulate filters to GDI vehicles. SAE Paper No. 2012-01-1244.CrossRefGoogle Scholar
  76. Sakono, T., Nakai, E., Kataoka, M., Takamatsu, H. and Terazawa, Y. (2011). Mazda SKYACTIV-D 2.2L diesel engine. 20th Aachen Colloquium.Google Scholar
  77. Sanchez, F. P., Bandivadekar, A. and German, J. (2012). Estimated cost of emission reduction technologies for light-duty vehicles. ICCT.Google Scholar
  78. Sappok, A., Morrow, R., Wong, V., Pazar, J., Doustar, I. and Zisholtz, E. (2010). Unraveling DPF degradation using chemical tracers and opportunities for extending filter life. DEER Conf. Google Scholar
  79. Schöppe, D., Zhang, H., Rösel, G., Achleitner, E., Kapphan, F. and Dupont, H. (2013). Next generation engine management systems for gasoline direct injection. 34 th Internationales Wiener Motorensymposium.Google Scholar
  80. Shim, B. J., Park, K. S., Koo, J. M., Nguyen, M. S. and Jin, S. H. (2013). Estimation of soot oxidation rate in DPF under carbon and non-carbon based particulate matter accumulated condition. Int. J. Automotive Technology 14,2, 207–212.CrossRefGoogle Scholar
  81. Stetter, J., Forster, N., Ghandhi, J. and Foster, D. (2003) The impact of oil consumption mechanisms on diesel exhaust particle size distributions and detailed exhaust chemical composition. DEER Conf. Google Scholar
  82. Thiruvengadam, A., Besch, M., Carder D., Oshinuga, A. and Gautam, M. (2012). Influence of real-world engine load conditions on nanoparticle emissions from a DPF and SCR equipped heavy-duty diesel engine. Environ. Sci. Technol., 46, 1907–1913.CrossRefGoogle Scholar
  83. Vincent, J. H. (2007). Aerosol Sampling — Sciences, Standards, Instrumentations, and Applications. John Wiley & Sons Ltd. UK.Google Scholar
  84. Weiss, M., Bonnel, P., Kühlwein, J., Provenza, A., Lambrecht, U., Alessandrini, S., Carriero, M., Colombo, R., Forni, P., Lanappe, G., Lijour, P. L., Manfredi, U., Montigny, F. and Sculati, M. (2012). Will Euro 6 reduce the NOx emissions of new diesel cars? — Insights from on-road tests with portable emissions measurement systems (PEMS). Atmos. Environ., 62, 657–665.CrossRefGoogle Scholar
  85. Whitaker, P., Kapus, P., Ogris, M. and Hollerer, P. (2011). Measures to reduce particulate emissions from gasoline DI engines. SAE Paper No. 2011-01-1219.CrossRefGoogle Scholar
  86. Wang, D., Liu, Z. C., Tian, J., Liu, J. W. and Zhang, J. R. (2012). Investigation of particle emission characteristics from a diesel engine with a diesel particulate filter for alternative fuels. Int. J. Automotive Technology 13,7, 1023–1032.CrossRefGoogle Scholar
  87. Wang, L., Song, C., Song, J., Lv, K., Pang, H. and Zhang, W. (2013). Aliphatic C-H and oxygenated surface functional groups of diesel in-cylinder soot: Characterizations and impact on soot oxidation behavior. Proc. Combustion Institute, 34, 3099–3106.CrossRefGoogle Scholar
  88. Yamano, J., Ikoma, K., Matsui, R., Ikegami, N., Mori, S. and Yano, T. (2013). The new “Earth Dreams Technology i- DTEC” 1.6 L diesel engine from Honda. 34th Internationales Wiener Motorensymposium.Google Scholar
  89. Zhang, S. and McMahon, W. (2012). Particulate emissions for LEV II light-duty gasoline direct injection vehicles. SAE Paper No. 2012-01-0442.CrossRefGoogle Scholar
  90. Zhao, H. (2010). Advanced Direct Injection Combustion Engine Technologies and Development — Volume 2: Diesel Engines. Woodhead Publishing Limited. UK.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Mechanical EngineeringKorea UniversitySeoulKorea

Personalised recommendations