Advertisement

International Journal of Automotive Technology

, Volume 14, Issue 5, pp 773–778 | Cite as

Three-speed transmission system for purely electric vehicles

  • Z. ZhangEmail author
  • C. Zuo
  • W. Hao
  • Y. Zuo
  • X. L. Zhao
  • M. Zhang
Article

Abstract

This paper discusses the necessity of using a transmission system to improve the energy efficiency of purely electric vehicles (EVs). The energy efficiency of an electric motor varies at different operating points to meet the output power demand. The three gear ratios of a transmission system can maintain the motor speed within a stable region with relatively high energy efficiency, while various vehicle speeds are needed. This work is based on a light EV prototype. The optimized gear ratios of this transmission result in a considerably reduced energy consumption of 9.3% compared with conventional EVs with single-speed reducers under the condition of the Urban Dynamometer Driving Schedule driving cycle. Thus, the transmission system is necessary to improve the energy efficiency of EVs.

Key Words

Electric vehicle Transmission system Motor efficiency Gear ratio Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, C. (2004). On Auxiliary Systems in Commercial Vehicles. Industrial Electrical Engineering Department of Industrial Electrical Engineering and Automation. Ph. D. Dissertation. Lund University.Google Scholar
  2. Axsen, J. and Kurani, K. (2008). The Early US Market for PHEVs: Anticipating Consumer Awareness, Recharve Potential, Design Priorities and Energy Impacts. Institute of Transportation Studies. University of California. Davis. UCD-ITS-RR-08-22.Google Scholar
  3. Bauch-Banetzky, D., Ruethlein, A. and Sonnenburg, R. (1999). Permanent Magneterregte Synchronmaschine mit Nd-Fe-B Dauermagneten fur den Einsatz in Personenkraft Fahrzeugen. VDI Berichte 1459: Entwicklung Konstruktion Vertrieb HYBRIDANTRIEBE, ISSN 0083-5560, ISBN 3-18-091459-9, Dusseldorf, Germany.Google Scholar
  4. Bishop, J. D. K., Doucette, R. T., Robinson, D., Mills, B. and McCulloch, M. D. (2011). Investigating the technical, economic and environmental performance of electric vehicles in the real-world: A case study using electric scooters. J. Power Sources, 196, 10094–10104.CrossRefGoogle Scholar
  5. Chen, C. H. and Cheng, M. Y. (2006). Design of a multispeed winding for a brushless DC motor and its sensorless control. IEE Proc.-Electr. Power Appl., 153, 834–841.CrossRefGoogle Scholar
  6. Cheng, Y., Cui, S. and Chan, C. C. (2009). Control strategies for an electric variable transmission based hybrid electric vehicle. Proc. IEEE VPPC’ 09, Sept., 1296–1300.Google Scholar
  7. Haddoun, A., Benbouzid, M. E. H., Diallo, D., Abdessemed, R., Ghouili, J. and Srairi, K. (2007). A loss-minimization DTC scheme for EV induction motors. IEEE Trans. Vehicle Technology, 56, 81–88.CrossRefGoogle Scholar
  8. Kim, J., Kim, T., Min, B., Hwang, S. and Kim, H. (2011). Mode control strategy for a two-mode hybrid electric vehicle using electrically variable transmission (EVT) and fixed-gear mode. IEEE Trans. Vehicle Technology, 60, 793–803.CrossRefGoogle Scholar
  9. Lechner, G. and Naunheimer, H. (1999). Automotive Transmissions: Fundamentals, Selection, Design and Application. Springer. Berlin.Google Scholar
  10. Loveday, E. (2011). Vocis says two-speed electric vehicle transmission will boost battery life. http://green.autoblog.com/2011/08/19/vocis-says-two-speed-electric-vehicletransmission-will-boost-ba/ Google Scholar
  11. McKeegan, N. (2011). Antonov’s 3-speed transmission for electric vehicles boosts efficiency by 15 percent. http://www.gizmag.com/antonov-3-speed-transmission-ev/19088/ Google Scholar
  12. Pellegrino, G., Vagati, A., Guglielmi, P. and Boazzo, B. (2012). Performance comparison between surface-mounted and interior pm motor drives for electric vehicle application. IEEE Trans. Ind. Electron., 59, 803–811.CrossRefGoogle Scholar
  13. Pearre, N. S., Kempton, W., Guensler, R. L. and Elango, V. V. (2011). Electric vehicles: How much range is required for a day’s driving? Transportation Research Part C, 19, 1171–1184.CrossRefGoogle Scholar
  14. Qin, D., Zhou, B., Hu, M., Hu, J. and Wang, X. (2011). Parameters design of powertrain system of electric vehicle with two-speed gearbox. J. Chongqing University, 34, 1–6.Google Scholar
  15. Rahman, Z., Ehsani, M. and Butler, K. L. (2000). An investigation of electric motor drive characteristics for EV and HEV propulsion systems. SAE Paper No. 2000-01-3062.CrossRefGoogle Scholar
  16. Suh, B., Frank, A., Chung, Y. J., Lee, E. Y., Chang, Y. H. and Han, S. B. (2011). Powertrain system optimization for a heavy-duty hybrid electric bus. Int. J. Automotive Technology 12,1, 131–139.CrossRefGoogle Scholar
  17. Thomas, C. E. (2009). Transportation options in a carbon-constrained world: Hybrids, plug-in hybrids, biofuels, fuel cell electric vehicles, and battery electric vehicles. Int. J. Hydrogen Energy, 34, 9279–9296.CrossRefGoogle Scholar
  18. Tolbert, L. M. and Peng, F. Z. (1998). Multilevel converters for large electric drives. APEC’ 98, Anaheim, California, Feb., 530–536.Google Scholar
  19. Zackrisson, T. (2003). Modeling and Simulation of a Driveline with an Automatic Gearbox. M.S. Thesis. Royal Institute of Technology. Stockholm. Sweden.Google Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Z. Zhang
    • 1
    Email author
  • C. Zuo
    • 1
  • W. Hao
    • 1
  • Y. Zuo
    • 1
  • X. L. Zhao
    • 1
  • M. Zhang
    • 1
  1. 1.College of Mechanical Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations