Advertisement

International Journal of Automotive Technology

, Volume 13, Issue 5, pp 713–724 | Cite as

Evaluation of natural and tracer fluorescent emission methods for droplet size measurements in a diesel spray

  • J. V. Pastor
  • R. Payri
  • J. M. Salavert
  • J. ManinEmail author
Article

Abstract

Spray sizing that records fluorescent emission and scattered light has been widely applied to spray diagnostics over the last two decades. Different experimental strategies have been developed, but comparing the different solutions offered has remained of interest to experimentalists. In this work, a comparison of two fluorescence strategies for measuring droplet size in the liquid phase of a last-generation DI diesel spray is conducted. The natural fluorescent emission of a commercial diesel fuel and the fluorescence emitted by a tracer (Rhodamine B) are compared using theoretical and experimental approaches. The LIF/Mie ratio commonly called Planar Droplet Sizing (PDS) technique is applied in two different ways to elucidate the possible advantages of using a fluorescent dopant. The sprays were injected under non-evaporative conditions into a constant pressure vessel that simulates densities present at the moment of injection in currently used passenger car diesel engines. Characterization of the signal properties was performed by measuring the absorption coefficient, fluorescence emission spectrum, quantum yield and lifetime of both configurations. The scattered light and fluorescence intensities were calculated to verify the dependencies of the droplet surface and volume. When applying the two techniques to quantify droplet size in dense diesel sprays, the results show that signal weakness and lack of control over the properties of natural fluorescence produce distortion in the shape of the spray and cause measurements to be unreliable.

Key Words

Diesel spray Sauter mean diameter (SMD) Laser-induced fluorescence (LIF) Rhodamine B Fluorescence quantum yield 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, H. E., Damaschke, N., Borys, M. and Tropea, C. (2003). Laser Doppler and Phase Doppler Measurement Techniques. Springer. Berlin.Google Scholar
  2. Barnes, M. D., Whitten, W. B. and Ramsey, J. M. (1994). Enhanced fluorescence yields through cavity quantumelectrodynamic effects in microdroplets. J. Optical Society of America B 11,7, 1297–1304.CrossRefGoogle Scholar
  3. Benajes, J., Molina, S., Novella, R., Amorim, R., Ben Hadj Hamouda, H. and Hardy, J. (2010). Comparison of two injection systems in an HSDI diesel engine using split injection and different injector nozzles. Int. J. Automotive Technology 11,2, 139–146.CrossRefGoogle Scholar
  4. Charalampous, G. and Hardalupas, Y. (2011). Method to reduce errors of droplet sizing based on the ratio of fluorescent and scattered light intensities (laser-induced fluorescence/Mie technique). Applied Optics, 50, 3622–3637.CrossRefGoogle Scholar
  5. Chen, G., Mazumder, M., Chang, R. K., Swindal, J. C. and Acker, W. P. (1996). Laser diagnostics for droplet characterization: Application of morphology dependent resonances. Progress in Energy and Combustion Science 22,2, 163–188.CrossRefGoogle Scholar
  6. Desantes, J. M., Payri, R., Garcia, J. M. and Salvador, F. J. (2007). A contribution to the understanding of isothermal diesel spray dynamics. Fuel 86,7–8, 1093–1101.CrossRefGoogle Scholar
  7. Domann, R. and Hardalupas, Y. A. (2000). Study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique. Part. Part. Syst. Charact. 3–11.Google Scholar
  8. Domann, R. and Hardalupas, Y. A. (2001). Spatial distribution of fluorescence within large doplets and its dependence on dye concentration. Applied Optics 40,21, 3586–3597.CrossRefGoogle Scholar
  9. Domann, R. and Hardalupas, Y. A. (2002). Quantitative measurement of planar droplet sauter mean diameter in sprays using planar droplet sizing. 11th Int. Symp. Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal.Google Scholar
  10. Eckbreth, A. C. (1988). Laser Diagnostics for Combustion Species and Temperature. Abacus. Cambridge. Mass.Google Scholar
  11. Greenhalgh, D. A. (1999). Planar measurements of fuel vapour, liquid fuel, liquid droplet size and soot. Planar Optical Measurement Methods for Gas Turbine Components, 1–7.Google Scholar
  12. Im, K., Lin, K., Lai, M. and Chon, M. (2011). Breakup modeling of a liquid jet in cross flow. Int. J. Automotive Technology 12,4, 489–496.CrossRefGoogle Scholar
  13. Jermy, M. C. and Greenhalgh, D. A. (2000). Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase doppler measurement. Appl. Phys. B, 71, 703–710.CrossRefGoogle Scholar
  14. Kim, Y., Kim, K. and Lee, K. (2011). Effect of a 2-stage injection strategy on the combustion and flame characteristics in a PCCI engine. Int. J. Automotive Technology 12,5, 639–644.CrossRefGoogle Scholar
  15. Ko, F. H., Weng, L. Y., Ko, C. J. and Chu, T. C. (2006). Characterization of imprinting polymeric temperature variation with fluorescent Rhodamine B molecule. Microelectronic Engineering, 83, 864–868.CrossRefGoogle Scholar
  16. Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. 3rd Edn. Springer.Google Scholar
  17. Lee, S. H., Teong, J., Lee, J. T., Ryou, H. S. and Hong, K. (2005). Investigation on spray characteristics under ultrahigh injection pressure conditions. Int. J. Automotive Technology 6,2, 125–131.Google Scholar
  18. Lee, B., Song, J., Chang, Y. and Jeon, C. (2010). Effect of the number of fuel injector holes on characteristics of combustion and emissions in a diesel engine. Int. J. Automotive Technology 11,6, 783–791.CrossRefGoogle Scholar
  19. LeGal, P., Farrugia, N. and Greenhalgh, D. A. (1999). Laser sheet dropsizing of dense sprays. Optics and Laser Techn., 31, 75–83.CrossRefGoogle Scholar
  20. Lockett, R. D., Richter, J. and Greenhalgh, D. A. (1998). The characterisation of a diesel spray using combined laser induced fluorescence and laser sheet dropsizing. Conf. Lasers and Electro-Optics Europe.Google Scholar
  21. Magde, D., Rojas, G. E. and Seybold, P. (1999). Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem. Photobiol., 70, 737.CrossRefGoogle Scholar
  22. Naber, J. and Siebers, D. (1996). Effects of gas density and vaporization on penetration and dispersion of diesel sprays. SAE Paper No. 960034.Google Scholar
  23. Pastor, J. V., López, J. J., Juliá, J. E. and Benajes, J. V. (2002). Planar laser-induced fluorescence fuel concentration measurements in isothermal diesel sprays. Opt. Express 10,7, 309–323.Google Scholar
  24. Pastor, J. V., Payri, R., Araneo, L. and Manin, J. (2009). Correction method for droplet sizing by laser-induced fluorescence in a controlled test situation. Optical Engineering 48,1, 013601.CrossRefGoogle Scholar
  25. Payri, R., Garcia, J. M., Salvador, F. J. and Gimeno, J. (2005a). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84, 551–561.CrossRefGoogle Scholar
  26. Payri, R., Salvador, F. J., Gimeno, J. and Soare, V. (2005b). Determination of diesel sprays characteristics in real engine in-cylinder air density and pressure conditions. J. Mech. Sci. Technol., 19, 2040–2052.CrossRefGoogle Scholar
  27. Payri, R., Tormos, B., Salvador, F. J. and Araneo, L. (2008). Spray droplet velocity characterization for convergent nozzles with three different diameters. Fuel 87,15, 3176–3182.CrossRefGoogle Scholar
  28. Payri, F., Pastor, J., Payri, R. and Manin, J. (2011). Determination of the optical depth of a DI diesel spray. J. Mech. Sci. Technol., 25, 209–219.CrossRefGoogle Scholar
  29. Potz, D., Chirst, W. and Dittus, B. (2000). Diesel nozzle: The determining interface between injection system and combustion chamber. Conf. Thermo and Fluid-dynamic Processes in Diesel Engines, Valencia, Spain.Google Scholar
  30. Ramírez, A. I., Som, S., Aggarwal, S. K., Kastengren, A. L., El-Hannouny, E. M., Longman, D. E. and Powell, C. F. (2009). Quantitative X-ray measurements of highpressure fuel sprays from a production heavy duty diesel injector. Experiments in Fluids 47,1, 119–134.CrossRefGoogle Scholar
  31. Schulz, C. and Sick, V. (2005). Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Progress in Energy and Combustion Science, 31, 75–121.CrossRefGoogle Scholar
  32. Sjoback, R. and Nygren, J. and Kubista, M. (1998). Characterization of fluorescein—oligonucleotide conjugates and measurement of local electrostatic potential. Biopolymers, 46, 445–453.CrossRefGoogle Scholar
  33. Soare, V. (2007). Phase Doppler Measurement in Diesel Dense Sprays: Optimisation of Measurements and Study of the Orifice Geometry Influence Over the Spray at Microscopic Level. Ph.D. Dissertion. E.T.S. Ingenieros Industriales. Universidad Politécnica de Valencia. Spain.Google Scholar
  34. Williams, A. T. R., Winfield, S. A. and Miller, J. N. (1983). Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst., 108, 1067.CrossRefGoogle Scholar
  35. Yeh, C. N., Kosaka, H. and Kamimoto, T. A. (1993). Fluorescence/scattering imaging technique for instantaneous 2-D measurements of particle size distribution in a transient spray. Proc. 3rd Cong. Opt. Part. Sizing, Yokohama, Japan, 335–361.Google Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. V. Pastor
    • 1
  • R. Payri
    • 1
  • J. M. Salavert
    • 1
  • J. Manin
    • 2
    Email author
  1. 1.CMT - Motores TérmicosUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Sandia National LaboratoriesLivermoreUSA

Personalised recommendations