Advertisement

Effects of intake flow on the spray structure of a multi-hole injector in a DISI engine

  • S. KimEmail author
  • J. M. Nouri
  • Y. Yan
  • C. Arcoumanis
Article

Abstract

The spray characteristics of a 6-hole injector were examined in a single cylinder optical direct injection spark ignition engine. The effects of injection timing, in-cylinder charge motion, fuel injection pressure, and coolant temperature were investigated using the 2-dimensional Mie scattering technique. It was confirmed that the in-cylinder charge motion played a major role in the fuel spray distribution during the induction stroke while injection timing had to be carefully considered at high injection pressures during the compression stroke to prevent spray impingement on the piston.

Key Words

Mie scattering Intake swirl Spray structure Multi-hole injector Direct injection Gasoline engine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birth, I. G., M. Rechs, M. U., Spicher, U. and S. Bernhardt, S. (2006). Experimental investigation of the in-nozzle flow of valve covered orifice nozzle for gasoline direct injection. 7th Int. Symp. Internal Combustion Diagnostics, 59–78, Kurhaus Baden-Baden.Google Scholar
  2. Fraidl, G. K., Piock, W. F. and Wirth, M. (1996). Gasoline direct injection. actual trends and future strategies for injection and combustion systems. SAE Paper No. 960465, 95–111.Google Scholar
  3. Honda, T., Kawamoto, M., Katashiba, H., Sumida, M., Fukutomi, M. and Kawajiri, K. (2004). A study of mixture formation and combustion for spray guided DISI. SAE Paper No. 2004-01-0046.Google Scholar
  4. Karaiskos, I. E. (2005). Spray Structure and Mixture Distribution in a Direct Injection Gasoline Engine. Ph. D. Dissertation, University of London.Google Scholar
  5. Li, T., Nishida, K. and Hiroyasu, H. (2004). Characterization of initial spray from a D.I. gasoline injector by holography and laser diffraction method. Int. J. Atomization and Sprays, 14, 477–494.CrossRefGoogle Scholar
  6. Lippert, A. M., El Tahry, S., Huebler, M. S., Parrish, S. E., Inoue, H., Noyori, T., Nakama, K. and Abe, T. (2004). Development and optimisation of a small-displacement spark-ignition direct-injection engine-stratified operation. SAE Paper No. 2004-01-0033.Google Scholar
  7. Mitroglou, N. (2005). Multi-Hole Injectors for Direct-Injection Gasoline Engines. Ph. D. Dissertation. The City University.Google Scholar
  8. Mitroglou, N., Arcoumanis, C., Mori, K. and Motoyama, Y. (2005). Mixture distribution in a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors. ICOLAD 2005, 27–40.Google Scholar
  9. Mitroglou, N., Nouri, J. M., Gavaises, M. and Arcoumanis, C. (2006). Flow and spray caracteristics in spray-guided direct injection engines. J. Engine Research 7,3, 255–270.CrossRefGoogle Scholar
  10. Mitroglou, N., Nouri, J. M., Yan, Y., Gavaises, M. and Arcoumanis, C. (2007). Spray structure generated by multi-hole injectors for gasoline direct injection engines. SAE Paper No. 2007-01-1417.Google Scholar
  11. Nouri, J. M. and Whitelaw, J. H. (2002). Effect of chamber pressure on the spray structure froma swirl pressure atomiser for direct injection gasoline engines. 1st Int. Conf. Optical Diagnostics, ICOLAD, 1, 121–129.Google Scholar
  12. Nouri, J. M. and Whitelaw, J. H. (2006). Impingement of gasoline sprays on angled plates. Int. J. Atomization and Sprays 16,6, 705–726.CrossRefGoogle Scholar
  13. Nouri, J. M., Mitroglou, N., Yan, Y. and Arcoumanis, C. (2007). Internal flow and cavitation in a multi-hole injector for gasoline direct injection engines. SAE Paper No. 2007-01-1405.Google Scholar
  14. Nouri, J. M. and Whitelaw, J. H. (2007). Impingement of gasoline sprays on angled plates. Int. J. Atomization and Sprays 17,6, 1–20.Google Scholar
  15. Ortmann, R., Arndt, S., Raimann, J., Grzeszik, R. and Wurfel, G. (2001). Methods and analysis of fuel injection, mixture preparation and charge stratification in different direct-injected SI engines. SAE Paper No. 2001-01-0970.Google Scholar
  16. Preussner, C., Doring, Fehler, S. and Kampmann, S. (1998). GDI: interaction between mixture preparation combution system, and injector performacne. SAE Paper No. 980498.Google Scholar
  17. Shim, Y. S., Choi, G. M. and Kim, D. J. (2008). Numerical modeling of hollow-cone fuel atomization, vaporization and wall impingement processes under high ambient temperatures. Int. J. Aumotive Technology 9,3, 267–275.CrossRefGoogle Scholar
  18. Skosberg, M., Dahlander, P., Lindgren, R. and Denbratt, I. (2005). Effects of injector parameters on mixture formation for multi-hole nozzles in a spray-guided gasoline DI engine. SAE Paper No. 2005-01-0097.Google Scholar
  19. Wirth, M., Piock, W. F., Fraidl, G. K. K., Schoeggi, P. and Winklhofer, E. (1998). Gasoline DI engines. the complete system approach by interaction of advanced development tools. SAE Paper No. 980492.Google Scholar
  20. Wirth, M., Zimmermann, D., Friedfeldt, R., Caine, J., Schamel, A., Davies, M., Peirce, G., Storch, A., Ries-Müller, K., Gansert, K. P., Pilgram, G., Ortmann, R., Würfel, G. and Gerhardt, J. (2004). A cost optimised gasoline spray guided direct injection system for improved fuel economy, seminar on fuel economy and engine downsizing. Institution of Mechanical Engineers, One Birdcage Walk, London, 13 May 2004.Google Scholar
  21. Zhao, F., Lai, M. and Harrington, D. L. (1997). A review of mixture preparation and combustion control strategies for SIDI gasoline engines. SAE Paper No. 970627.Google Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg GmbH 2009

Authors and Affiliations

  1. 1.Department of Automotive Mechanical EngineeringSilla UniversityBusanKorea
  2. 2.School of Engineering and Mathematical SciencesThe City UniversityLondonUK

Personalised recommendations