Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Depth Affects Seagrass Restoration Success and Resilience to Marine Heat Wave Disturbance

Abstract

Accelerating losses of seagrass meadows motivate the restoration of these highly productive and beneficial ecosystems. Understanding how environmental parameters including depth and temperature affect restoration trajectories through time is key to conserving and restoring seagrass meadows. We used a long-term (12-year), landscape-scale experiment to test the effect of depth on eelgrass (Zostera marina) restoration success and resilience to a marine heat wave (MHW) disturbance. We found that depth was a critical determinant of seagrass restoration success, with no long-term success at sites deeper than 1.5 m below mean sea level (MSL) or shallower than − 0.8 m MSL. Seeds germinated below − 1.5 m MSL, but shoots did not persist, confirming earlier predictions from a hydrodynamic-vegetation model. Depth was also a significant predictor of seagrass resilience following MHW disturbance. Our results suggest that areas of restored seagrass that are resilient to temperature stress exist across an intermediate depth range, excluding the shallowest and deepest portions of the full habitable depth range for restored seagrass. Over the next decades, sea-level rise will likely affect both the habitable area and the resilient area, available for seagrass restoration. However, seagrass enhancement of sediment accretion may at least partially offset sea-level rise rates. As ocean temperatures warm and MHWs occur more frequently, the resilience of seagrass meadows to temperature stress will be of increasing concern. These results suggest that depth is a critical parameter that will help determine what areas are most resilient and therefore most suitable for conservation and restoration.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abe, Mahiko, Akira Kurashima, and Miyuki Maegawa. 2008. High water-temperature tolerance in photosynthetic activity of Zostera marina seedlings from Ise Bay, Mie Prefecture, central Japan. Fisheries Science 74 (5): 1017–1023. https://doi.org/10.1111/j.1444-2906.2008.01619.x.

  2. Borum, J., O. Pedersen, T.M. Greve, T.A. Frankovich, J.C. Zieman, J.W. Fourqurean, and C.J. Madden. 2005. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology 93: 148–158. https://doi.org/10.1111/j.1365-2745.2004.00943.x.

  3. Bulthuis, Douglas A. 1987. Effects of temperature on photosynthesis and growth of seagrasses. Aquatic Botany 27: 27–40. https://doi.org/10.1016/0304-3770(87)90084-2.

  4. Carr, J.A., P. D’Odorico, K.J. McGlathery, and P.I. Wiberg. 2012. Modeling the effects of climate change on eelgrass stability and resilience: future scenarios and leading indicators of collapse. Marine Ecology Progress Series 448: 289–301. https://doi.org/10.3354/meps09556.

  5. Collier, C.J., and M. Waycott. 2014. Temperature extremes reduce seagrass growth and induce mortality. Marine Pollution Bulletin 83 (2): 483–490. https://doi.org/10.1016/j.marpolbul.2014.03.050.

  6. Collier, Catherine J., Sven Uthicke, and Michelle Waycott. 2011. Thermal tolerance of two seagrass species at contrasting light levels: implications for future distribution in the great barrier reef. Limnology and Oceanography 56: 2200–2210. https://doi.org/10.4319/lo.2011.56.6.2200.

  7. R Core Team. 2018. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

  8. Duarte, Carlos M. 1991. Seagrass depth limits. Aquatic Botany 40: 363–377. https://doi.org/10.1016/0304-3770(91)90081-F.

  9. Greiner, Jill T., Karen J. McGlathery, John Gunnell, and Brent A. McKee. 2013. Seagrass restoration enhances “blue carbon” sequestration in coastal waters. Edited by Just Cebrian. PLoS ONE 8 (8): e72469. https://doi.org/10.1371/journal.pone.0072469.

  10. Greve, Tina Maria, Jens Borum, and Ole Pedersen. 2003. Meristematic oxygen variability in eelgrass (Zostera marina). Limnology and Oceanography 48: 210–216. https://doi.org/10.4319/lo.2003.48.1.0210.

  11. Hammer, Kj, J. Borum, H. Hasler-Sheetal, Shields Ec, K. Sand-Jensen, and K.A. Moore. 2018. High temperatures cause reduced growth, plant death and metabolic changes in eelgrass Zostera marina. Marine Ecology Progress Series 604: 121–132. https://doi.org/10.3354/meps12740.

  12. Hansen, J.C.R., and M.A. Reidenbach. 2012. Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Marine Ecology Progress Series 448: 271–287. https://doi.org/10.3354/meps09225.

  13. Hobday, Alistair J., Lisa V. Alexander, Sarah E. Perkins, Dan A. Smale, Sandra C. Straub, Eric C.J. Oliver, Jessica A. Benthuysen, et al. 2016. A hierarchical approach to defining marine heatwaves. Progress in Oceanography 141: 227–238. https://doi.org/10.1016/j.pocean.2015.12.014.

  14. Kendrick, Gary A., Robert J. Nowicki, Ylva S. Olsen, Simone Strydom, Matthew W. Fraser, Elizabeth A. Sinclair, John Statton, et al. 2019. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Frontiers in Marine Science 6. https://doi.org/10.3389/fmars.2019.00455.

  15. Koch, E.W. 2001. Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1–17.

  16. Koch, Marguerite, George Bowes, Cliff Ross, and Xing-Hai Zhang. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology 19 (1): 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x.

  17. Lawson, S.E., P.L. Wiberg, K.J. McGlathery, and D.C. Fugate. 2007. Wind-driven sediment suspension controls light availability in a shallow coastal lagoon. Estuaries and Coasts 30: 102–112. https://doi.org/10.1007/BF02782971.

  18. Lawson, Se, Kj McGlathery, and Pl Wiberg. 2012. Enhancement of sediment suspension and nutrient flux by benthic macrophytes at low biomass. Marine Ecology Progress Series 448: 259–270. https://doi.org/10.3354/meps09579.

  19. Lee, Kun-Seop, Sang Rul Park, and Jung-Bae Kim. 2005. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Marine Biology 147: 1091–1108. https://doi.org/10.1007/s00227-005-0011-8.

  20. Lee, Kun-Seop, Sang Rul Park, and Young Kyun Kim. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology 350: 144–175. https://doi.org/10.1016/j.jembe.2007.06.016.

  21. Lefcheck, Jonathan S., David J. Wilcox, Rebecca R. Murphy, Scott R. Marion, and Robert J. Orth. 2017. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Global Change Biology. https://doi.org/10.1111/gcb.13623.

  22. Marbà, Núria, and Carlos M. Duarte. 2009. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality: warming and Posidonia oceanica shoot mortality. Global Change Biology 16: 2366–2375. https://doi.org/10.1111/j.1365-2486.2009.02130.x.

  23. McGlathery, K. 2017. Above- and below-ground biomass and canopy height of seagrass in Hog Island Bay and South Bay, VA 2007-2017. Virginia coast reserve long-term ecological research project data publication knb-lter-vcr.183.17. University of Virginia.

  24. McGlathery, K. J., and R. Christian. 2017. Water quality sampling - integrated measurements for the Virginia Coast, 1992-2017. Knb-lter-vcr.247.9. Virginia coast reserve long-term ecological research project data publication.

  25. McGlathery, K.J., L.K. Reynolds, L.W. Cole, R.J. Orth, S.R. Marion, and A. Schwarzschild. 2012. Recovery trajectories during state change from bare sediment to eelgrass dominance. Marine Ecology Progress Series 448: 209–221. https://doi.org/10.3354/meps09574.

  26. Moore, Kenneth A., and Jessie C. Jarvis. 2008. Environmental factors affecting recent summertime eelgrass diebacks in the lower Chesapeake Bay: implications for long-term persistence. Journal of Coastal Research 10055: 135–147. https://doi.org/10.2112/SI55-014.

  27. Moore, K.A., and F.T. Short. 2006. Zostera: biology, ecology, and management. In Seagrasses: biology, ecology, and conservation, 361–386. Dordrecht: Springer.

  28. Moore, Ka, Ec Shields, Db Parrish, and Rj Orth. 2012. Eelgrass survival in two contrasting systems: role of turbidity and summer water temperatures. Marine Ecology Progress Series 448: 247–258. https://doi.org/10.3354/meps09578.

  29. Najjar, Raymond G., Christopher R. Pyke, Mary Beth Adams, Denise Breitburg, Carl Hershner, Michael Kemp, Robert Howarth, et al. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86: 1–20. https://doi.org/10.1016/j.ecss.2009.09.026.

  30. Nejrup, Lars Brammer, and Morten Foldager Pedersen. 2008. Effects of salinity and water temperature on the ecological performance of Zostera marina. Aquatic Botany 88: 239–246. https://doi.org/10.1016/j.aquabot.2007.10.006.

  31. Nyström, Magnus, Albert V. Norström, Thorsten Blenckner, Maricela de la Torre-Castro, Johan S. Eklöf, Carl Folke, Henrik Österblom, Robert S. Steneck, Matilda Thyresson, and Max Troell. 2012. Confronting feedbacks of degraded marine ecosystems. Ecosystems 15: 695–710. https://doi.org/10.1007/s10021-012-9530-6.

  32. Oertel, G, C Carlson, and K Overman. 2000. Bathymetry of Hog Island Bay of the Virginia Coastal Reserve 1997-1999. Knb-lter-vcr.143.22. Virginia Coast Reserve Long-Term Ecological Research Project Data Publication.

  33. Oliver, Eric C.J., Markus G. Donat, Michael T. Burrows, Pippa J. Moore, Dan A. Smale, Lisa V. Alexander, and Jessica A. Benthuysen, et al. 2018. Longer and more frequent marine heatwaves over the past century. Nature Communications 9. https://doi.org/10.1038/s41467-018-03732-9.

  34. Oreska, Matthew P. J., Grace M. Wilkinson, Karen J. McGlathery, Molly Bost, and Brent A. McKee. 2017. Non-seagrass carbon contributions to seagrass sediment blue carbon. Limnology and Oceanography S3–S18. https://doi.org/10.1002/lno.10718.

  35. Orth, R.J., and Kj McGlathery. 2012. Eelgrass recovery in the coastal bays of the Virginia coast reserve, USA. Marine Ecology Progress Series 448: 173–176. https://doi.org/10.3354/meps09596.

  36. Orth, Robert J., Tim J.B. Carruthers, William C. Dennison, Carlos M. Duarte, James W. Fourqurean, Kenneth L. Heck, A. Randall Hughes, et al. 2006. A global crisis for seagrass ecosystems. BioScience 56: 987–996. https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2.

  37. Orth, R.J., K.A. Moore, S.R. Marion, D.J. Wilcox, and D.B. Parrish. 2012. Seed addition facilitates eelgrass recovery in a coastal bay system. Marine Ecology Progress Series 448: 177–195. https://doi.org/10.3354/meps09522.

  38. Pachauri, R.K., Leo Mayer, and Intergovernmental Panel on Climate Change, eds. 2014. Climate change 2014: synthesis report. Geneva: Intergovernmental Panel on Climate Change.

  39. Pergent, Gérard, Christine Pergent-Martini, Aymeric Bein, Marine Dedeken, Pascal Oberti, Antoine Orsini, Jean-François Santucci, and Frederic Short. 2015. Dynamic of Posidonia oceanica seagrass meadows in the northwestern Mediterranean: could climate change be to blame? Comptes Rendus Biologies 338 (7): 484–493. https://doi.org/10.1016/j.crvi.2015.04.011.

  40. Sallenger, Asbury H., Kara S. Doran, and Peter A. Howd. 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change 2: 884–888. https://doi.org/10.1038/nclimate1597.

  41. Santos, Isaac R., Bradley D. Eyre, and Markus Huettel. 2012. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuarine, Coastal and Shelf Science 98: 1–15. https://doi.org/10.1016/j.ecss.2011.10.024.

  42. Seddon, S., and Ac Cheshire. 2001. Photosynthetic response of Amphibolis antarctica and Posidonia australis to temperature and desiccation using chlorophyll fluorescence. Marine Ecology Progress Series 220: 119–130. https://doi.org/10.3354/meps220119.

  43. Short, Frederick T., and Hilary A. Neckles. 1999. The effects of global climate change on seagrasses. Aquatic Botany 63: 169–196. https://doi.org/10.1016/S0304-3770(98)00117-X.

  44. Short, Frederick T., Sarian Kosten, Pamela A. Morgan, Sparkle Malone, and Gregg E. Moore. 2016. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany 135: 3–17. https://doi.org/10.1016/j.aquabot.2016.06.006.

  45. Smale, Dan A., Thomas Wernberg, Eric C.J. Oliver, Mads Thomsen, Ben P. Harvey, Sandra C. Straub, Michael T. Burrows, et al. 2019. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change 9 (4): 306–312. https://doi.org/10.1038/s41558-019-0412-1.

  46. Thomson, Jordan A., Derek A. Burkholder, Michael R. Heithaus, James W. Fourqurean, Matthew W. Fraser, John Statton, and Gary A. Kendrick. 2015. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Global Change Biology 21 (4): 1463–1474. https://doi.org/10.1111/gcb.12694.

  47. Unsworth, Richard K.F., Catherine J. Collier, Michelle Waycott, Len J. Mckenzie, and Leanne C. Cullen-Unsworth. 2015. A framework for the resilience of seagrass ecosystems. Marine Pollution Bulletin 100 (1): 34–46. https://doi.org/10.1016/j.marpolbul.2015.08.016.

  48. Unsworth, Richard K.F., Len J. McKenzie, Lina M. Nordlund, and Leanne C. Cullen-Unsworth. 2018. A changing climate for seagrass conservation? Current Biology 28: R1229–R1232. https://doi.org/10.1016/j.cub.2018.09.027.

  49. Valle, Mireia, Guillem Chust, Andrea del Campo, Mary S. Wisz, Steffen M. Olsen, Joxe Mikel Garmendia, and Ángel Borja. 2014. Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise. Biological Conservation 170: 74–85. https://doi.org/10.1016/j.biocon.2013.12.017.

  50. van der Heide, Tjisse, Egbert H. van Nes, Gertjan W. Geerling, Alfons J.P. Smolders, Tjeerd J. Bouma, and Marieke M. van Katwijk. 2007. Positive feedbacks in Seagrass ecosystems: Implications for success in conservation and restoration. Ecosystems 10: 1311–1322. https://doi.org/10.1007/s10021-007-9099-7.

  51. van der Heide, Tjisse, Egbert H. van Nes, Marieke M. van Katwijk, Han Olff, and Alfons J.P. Smolders. 2011. Positive feedbacks in seagrass ecosystems – evidence from large-scale empirical data. Edited by Tamara Romanuk. PLoS ONE 6 (1): e16504. https://doi.org/10.1371/journal.pone.0016504.

  52. van Katwijk, M.M., A.R. Bos, V.N. de Jonge, L.S.A.M. Hanssen, D.C.R. Hermus, and D.J. de Jong. 2009. Guidelines for seagrass restoration: importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Marine Pollution Bulletin 58 (2): 179–188. https://doi.org/10.1016/j.marpolbul.2008.09.028.

  53. van Katwijk, Marieke M., Anitra Thorhaug, Núria Marbà, Robert J. Orth, Carlos M. Duarte, Gary A. Kendrick, Inge H.J. Althuizen, et al. 2016. Global analysis of seagrass restoration: the importance of large-scale planting. Edited by Henrik Österblom. Journal of Applied Ecology 53: 567–578. https://doi.org/10.1111/1365-2664.12562.

  54. Waycott, Michelle, Carlos M. Duarte, Tim J.B. Carruthers, Robert J. Orth, William C. Dennison, Suzanne Olyarnik, Ainsley Calladine, et al. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences 106 (30): 12377–12381. https://doi.org/10.1073/pnas.0905620106.

  55. Zuur, Alain F., Elena N. Ieno, Neil Walker, Anatoly A. Saveliev, and Graham M. Smith. 2009. Mixed effects models and extensions in ecology with R. Statistics for biology and health. New York: Springer New York. https://doi.org/10.1007/978-0-387-87458-6.

Download references

Acknowledgments

We thank the staff and volunteers at the University of Virginia’s Coastal Research Center for assistance in the field.

Funding

This work was funded by the National Science Foundation grants DEB-1237733 and DEB-1832221 to the Virginia Coast Reserve Long-Term Ecological Research project.

Author information

Correspondence to Lillian R. Aoki.

Additional information

Communicated by Melisa C. Wong

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aoki, L.R., McGlathery, K.J., Wiberg, P.L. et al. Depth Affects Seagrass Restoration Success and Resilience to Marine Heat Wave Disturbance. Estuaries and Coasts 43, 316–328 (2020). https://doi.org/10.1007/s12237-019-00685-0

Download citation

Keywords

  • Restoration
  • Seagrass
  • Zostera marina
  • Marine heat wave
  • Depth limit