Advertisement

Environmental Controls on the Geochemistry of a Short-Lived Bivalve in Southeastern Australian Estuaries

  • Briony K. ChamberlayneEmail author
  • Jonathan J. Tyler
  • Bronwyn M. Gillanders
Article

Abstract

Geochemical signals in bivalve carbonate hold the potential to record environmental change over timescales from months to centuries; however, not all bivalves provide reliable proxy records, and modern studies are essential to calibrate these relationships prior to use in palaeo-environmental reconstruction. In this study, 19 shells of the estuarine bivalve Arthritica helmsi, from 14 sites in Southeastern Australia, were obtained from museum collections and analysed for trace elemental (Sr/Ca, Mg/Ca, Sr/Li and Ba/Ca) and stable isotopic ratios (18O/16O and 13C/12C). Mean Sr/Ca and Mg/Ca exhibited significant negative correlations to temperature (R2 = 0.49, p = 0.001; R2 = 0.25, p = 0.02) in agreement with previously published models for trace element partitioning into inorganic aragonite. In addition, the within-shell range of Sr/Ca and Mg/Ca, as measured by laser ablation ICP-MS, correlated to the temperature range (R2 = 0.22, p = 0.03; R2 = 0.46, p = 0.002, respectively). Sr/Li ratios were also negatively correlated to temperature (R2 = 0.34, p = 0.008); however, a significant difference in the model coefficients with previous studies indicates this proxy should be applied with caution. Both oxygen and carbon isotope values exhibited large differences between shells from terrestrial, estuarine and marine waters, suggesting that these stable isotopes hold a potential to record large environmental changes such as sea-level changes or freshening/salinisation in estuarine environments. This study presents the first geochemical study of Arthritica helmsi, highlighting its potential as an environmental tracer.

Keywords

Arthritica helmsi Trace elements Stable isotopes Laser ablation ICP-MS Museum specimens 

Notes

Acknowledgements

The authors would like to acknowledge Kirrily Moore from the Tasmanian Museum and Art Gallery, Chris Rowley from Museum Victoria and Mandy Reid from The Australian Museum for providing samples for this study. Sarah Gilbert, Mark Rollog, Ben Wade, Tony Hall and Ken Neubauer are thanked for their assistance with trace elemental analyses, stable isotope analyses, electron microprobe analyses, XRD analysis and SEM imaging, respectively.

Funding Information

This research was supported by a grant from the Sir Mark Mitchell Foundation, South Australia.

Supplementary material

12237_2019_662_MOESM1_ESM.docx (2.8 mb)
ESM 1 (DOCX 2889 kb)

References

  1. Andrus, C.F.T., and K.W. Rich. 2008. A preliminary assessment of oxygen isotope fractionation and growth increment periodicity in the estuarine clam Rangia cuneata. Geo-Marine Letters 28: 301–308.  https://doi.org/10.1007/s00367-008-0109-3.CrossRefGoogle Scholar
  2. Bar-Matthews, M., A. Ayalon, M. Gilmour, A. Matthews, and C.J. Hawkesworth. 2003. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfallduring interglacial intervals. Geochimica et Cosmochimica Acta 67: 3181–3199.CrossRefGoogle Scholar
  3. Böhm, F., M.M. Joachimski, W.C. Dullo, A. Eisenhauer, H. Lehnert, J. Reitner, and G. Wörheide. 2000. Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochimica et Cosmochimica Acta 64: 1695–1703.  https://doi.org/10.1016/S0016-7037(99)00408-1.CrossRefGoogle Scholar
  4. Bougeois, L., M. de Rafélis, G.J. Reichart, L.J. de Nooijer, F. Nicollin, and G. Dupont-Nivet. 2014. A high resolution study of trace elements and stable isotopes in oyster shells to estimate central asian middle eocene seasonality. Chemical Geology 363: 200–212.  https://doi.org/10.1016/j.chemgeo.2013.10.037.CrossRefGoogle Scholar
  5. Bryan, S.P., and T.M. Marchitto. 2008. Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography 23: 1–17.  https://doi.org/10.1029/2007PA001553.CrossRefGoogle Scholar
  6. Butler, P.G., C.A. Richardson, J.D. Scourse, R. Witbaard, B.R. Schöne, N.M. Fraser, A.D. Wanamaker, C.L. Bryant, I. Harris, and I. Robertson. 2009. Accurate increment identification and the spatial extent of the common signal in five Arctica islandica chronologies from the Fladen Ground, northern North Sea. Paleoceanography 24: 1–18.  https://doi.org/10.1029/2008PA001715.CrossRefGoogle Scholar
  7. Butler, P.G., A.D. Wanamaker, J.D. Scourse, C.A. Richardson, and D.J. Reynolds. 2011. Long-term stability of δ13C with respect to biological age in the aragonite shell of mature specimens of the bivalve mollusk Arctica islandica. Palaeogeography, Palaeoclimatology, Palaeoecology 302: 21–30.  https://doi.org/10.1016/j.palaeo.2010.03.038.CrossRefGoogle Scholar
  8. Carré, M., J.P. Sachs, A.J. Schauer, W.E. Rodríguez, and F.C. Ramos. 2013. Reconstructing El Niño-Southern Oscillation activity and ocean temperature seasonality from short-lived marine mollusk shells from Peru. Palaeogeography, Palaeoclimatology, Palaeoecology 371: 45–53.  https://doi.org/10.1016/j.palaeo.2012.12.014.CrossRefGoogle Scholar
  9. Carré, M., J.P. Sachs, S. Purca, A.J. Schauer, P. Braconnot, R.A. Falcón, M. Julien, and D. Lavallée. 2014. Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science 345 (6200): 1045–1048.CrossRefGoogle Scholar
  10. Case, D.H., L.F. Robinson, M.E. Auro, and A.C. Gagnon. 2010. Environmental and biological controls on Mg and Li in deep-sea scleractinian corals. Earth and Planetary Science Letters 300: 215–225.  https://doi.org/10.1016/j.epsl.2010.09.029.CrossRefGoogle Scholar
  11. Chamberlayne, B.K. 2015. Late Holocene seasonal and multicentennial hydroclimate variability in the Coorong Lagoon, South Australia: evidence from stable isotopes and trace element profiles of bivalve molluscs (unpublished honours thesis), The University of Adelaide, Adelaide, Australia Google Scholar
  12. Dettman, D.L., K.W. Flessa, P.D. Roopnarine, B.R. Schöne, and D.H. Goodwin. 2004. The use of oxygen isotope variation in shells of estuarine mollusks as a quantitative record of seasonal and annual Colorado River discharge. Geochimica et Cosmochimica Acta 68: 1253–1263.  https://doi.org/10.1016/j.gca.2003.09.008.CrossRefGoogle Scholar
  13. Dietzel, M., N. Gussone, and A. Eisenhauer. 2004. Co-precipitation of Sr2+and Ba2+ with aragonite by membrane diffusion of CO2 between 10 and 50 °C. Chemical Geology 203: 139–151.  https://doi.org/10.1016/j.chemgeo.2003.09.008.CrossRefGoogle Scholar
  14. Dodd, J. Robert. 1965. Environmental control of strontium and magnesium in Mytilus. Geochimica et Cosmochimica Acta 29: 385–398.  https://doi.org/10.1016/0016-7037(65)90035-9.CrossRefGoogle Scholar
  15. Dodd, J.R., and E.L. Crisp. 1982. Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies. Palaeogeography, Palaeoclimatology, Palaeoecology 38: 45–56.CrossRefGoogle Scholar
  16. Donovan, J.J., and J.T. Armstrong. 2014. A new EPMA method for fast trace element analysis in simple matrices. Microscopy and Microanalysis 20: 724–725.  https://doi.org/10.1017/S1431927614005340.CrossRefGoogle Scholar
  17. Donovan, J.J., and T.N. Tingle. 1996. An improved mean atomic number background correction for quantitative microanalysis. Microscopy and Microanalysis.  https://doi.org/10.1017/S1431927696210013.
  18. Elliot, M., K. Welsh, C. Chilcott, M. McCulloch, J. Chappell, and B. Ayling. 2009. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology 280: 132–142.  https://doi.org/10.1016/j.palaeo.2009.06.007.CrossRefGoogle Scholar
  19. Epstein, S., and T. Mayeda. 1953. Variation of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta 4: 213–224.CrossRefGoogle Scholar
  20. Epstein, S., R. Buchsbaum, H.A. Lowenstam, and H.C. Urey. 1953. Revised carbonate-water isotopic temeprature scale. Geological Society of America Bulletin 64: 1315–1325.  https://doi.org/10.1130/0016-7606(1953)64.CrossRefGoogle Scholar
  21. Ferguson, J.E., K.R. Johnson, G. Santos, L. Meyer, and A. Tripati. 2013. Investigating δ13C and Δ14C within Mytilus californianus shells as proxies of upwelling intensity. Geochemistry, Geophysics, Geosystems 14: 1856–1865.  https://doi.org/10.1002/ggge.20090.CrossRefGoogle Scholar
  22. Freitas, P.S., L.J. Clarke, H. Kennedy, and C.A. Richardson. 2012. The potential of combined Mg/Ca and δ18O measurements within the shell of the bivalve Pecten maximus to estimate seawater δ18O composition. Chemical Geology 291: 286–293.  https://doi.org/10.1016/j.chemgeo.2011.10.023.CrossRefGoogle Scholar
  23. Fry, B. 2002. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25: 264–271.  https://doi.org/10.1007/BF02691313.CrossRefGoogle Scholar
  24. Füllenbach, C.S., B.R. Schöne, and R. Mertz-Kraus. 2015. Strontium/lithium ratio in aragonitic shells of Cerastoderma edule (Bivalvia)—A new potential temperature proxy for brackish environments. Chemical Geology 417: 341–355.  https://doi.org/10.1016/j.chemgeo.2015.10.030.CrossRefGoogle Scholar
  25. Füllenbach, C.S., B.R. Schöne, K. Shirai, N. Takahata, A. Ishida, and Y. Sano. 2017. Minute co-variations of Sr/Ca ratios and microstructures in the aragonitic shell of Cerastoderma edule (Bivalvia)—are geochemical variations at the ultra-scale masking potential environmental signals? Geochimica et Cosmochimica Acta 205: 256–271.  https://doi.org/10.1016/j.gca.2017.02.019.CrossRefGoogle Scholar
  26. Gaetani, G.A., and A.L. Cohen. 2006. Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies. Geochimica et Cosmochimica Acta 70: 4617–4634.  https://doi.org/10.1016/j.gca.2006.07.008.CrossRefGoogle Scholar
  27. Geeza, T.J., D.P. Gillikin, D.H. Goodwin, S.D. Evans, T. Watters, and N.R. Warner. 2018. Controls on magnesium, manganese, strontium, and barium concentrations recorded in freshwater mussel shells from Ohio. Chemical Geology: 1–12.  https://doi.org/10.1016/j.chemgeo.2018.01.001.CrossRefGoogle Scholar
  28. Gillikin, David Paul, F. De Ridder, H. Ulens, M. Elskens, E. Keppens, W. Baeyens, and F. Dehairs. 2005. Assessing the reproducibility and reliability of estuarine bivalve shells (Saxidomus giganteus) for sea surface temperature reconstruction: Implications for paleoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology 228: 70–85.  https://doi.org/10.1016/j.palaeo.2005.03.047.CrossRefGoogle Scholar
  29. Gillikin, D.P., F. Dehairs, A. Lorrain, D. Steenmans, W. Baeyens, and L. André. 2006a. Barium uptake into the shells of the common mussel (Mytilus edulis) and the potential for estuarine paleo-chemistry reconstruction. Geochimica et Cosmochimica Acta 70: 395–407.  https://doi.org/10.1016/j.gca.2005.09.015.CrossRefGoogle Scholar
  30. Gillikin, D.P., A. Lorrain, S. Bouillon, P. Willenz, and F. Dehairs. 2006b. Stable carbon isotopic composition of Mytilus edulis shells: Relation to metabolism, salinity, δ13CDIC and phytoplankton. Organic Geochemistry 37: 1371–1382.  https://doi.org/10.1016/j.orggeochem.2006.03.008.CrossRefGoogle Scholar
  31. Gillikin, D.P., A. Lorrain, L. Meng, and F. Dehairs. 2007. A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta 71: 2936–2946.  https://doi.org/10.1016/j.gca.2007.04.003.CrossRefGoogle Scholar
  32. Gillikin, David Paul, A. Lorrain, Y.M. Paulet, L. André, and F. Dehairs. 2008. Synchronous barium peaks in high-resolution profiles of calcite and aragonite marine bivalve shells. Geo-Marine Letters 28 (5-6): 351–358.  https://doi.org/10.1007/s00367-008-0111-9.CrossRefGoogle Scholar
  33. Goodwin, D.H., D.P. Gillikin, and P.D. Roopnarine. 2013. Preliminary evaluation of potential stable isotope and trace element productivity proxies in the oyster Crassostrea gigas. Palaeogeography, Palaeoclimatology, Palaeoecology 373: 88–97.  https://doi.org/10.1016/j.palaeo.2012.03.034.CrossRefGoogle Scholar
  34. Graniero, L.E., D. Surge, D.P. Gillikin, I. Briz, and M. Álvarez. 2017. Assessing elemental ratios as a paleotemperature proxy in the calcite shells of patelloid limpets. Palaeogeography, Palaeoclimatology, Palaeoecology 465: 376–385.  https://doi.org/10.1016/j.palaeo.2016.10.021.CrossRefGoogle Scholar
  35. Grossman, E.L., and T.-L. Ku. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology: Isotope Geoscience Section 59: 59–74.  https://doi.org/10.1016/0168-9622(86)90057-6.CrossRefGoogle Scholar
  36. Hart, S.R., and J. Blusztajn. 1998. Clams as recorders of ocean ridge volcanism and hydrothermal vent field activity. Science 280 (5365): 883–886.CrossRefGoogle Scholar
  37. Hatch, M.B.A., S.A. Schellenberg, and M.L. Carter. 2013. Ba/Ca variations in the modern intertidal bean clam Donax gouldii : An upwelling proxy? Palaeogeography, Palaeoclimatology, Palaeoecology 373: 98–107.  https://doi.org/10.1016/j.palaeo.2012.03.006.CrossRefGoogle Scholar
  38. Hathorne, E.C., T. Felis, A. Suzuki, H. Kawahata, and G. Cabioch. 2013. Lithium in the aragonite skeletons of massive Porites corals: A new tool to reconstruct tropical sea surface temperatures. Paleoceanography 28: 143–152.  https://doi.org/10.1029/2012PA002311.CrossRefGoogle Scholar
  39. Hellstrom, J., C. Paton, J. Woodhead, and Hergt, J. 2008. Iolite: Software for spatially resolved LA-(quad and MC) ICPMS analysis. In: Laser ablation ICP-MS in the Earth sciences: Current practices and outstanding issues, ed. Sylvester, P., 343. Mineralogical Association of Canada short course vol 40.Google Scholar
  40. Izumida, H., T. Yoshimura, A. Suzuki, R. Nakashima, T. Ishimura, M. Yasuhara, A. Inamura, N. Shikazono, and H. Kawahata. 2011. Biological and water chemistry controls on Sr/Ca, Ba/Ca, Mg/Ca and δ18O profiles in freshwater pearl mussel Hyriopsis sp. Palaeogeography, Palaeoclimatology, Palaeoecology 309: 298–308.  https://doi.org/10.1016/j.palaeo.2011.06.014.CrossRefGoogle Scholar
  41. Izzo, C., D. Manetti, Z.A. Doubleday, and B.M. Gillanders. 2016. Calibrating the element composition of Donax deltoides shells as a palaeo-salinity proxy. Palaeogeography, Palaeoclimatology, Palaeoecology 484: 89–96.  https://doi.org/10.1016/j.palaeo.2016.11.038.CrossRefGoogle Scholar
  42. Jeffrey, S.J., J.O. Carter, K.B. Moodie, and A.R. Beswick. 2001. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling and Software 16: 309–330.  https://doi.org/10.1016/S1364-8152(01)00008-1.CrossRefGoogle Scholar
  43. Kelemen, Z., D.P. Gillikin, L.E. Graniero, H. Havel, F. Darchambeau, A.V. Borges, A. Yambélé, A. Bassirou, and S. Bouillon. 2017. Calibration of hydroclimate proxies in freshwater bivalve shells from Central and West Africa. Geochimica et Cosmochimica Acta 208: 41–62.  https://doi.org/10.1016/j.gca.2017.03.025.CrossRefGoogle Scholar
  44. Krause-Nehring, J., A. Klgel, G. Nehrke, B. Brellochs, and T. Brey. 2011. Impact of sample pretreatment on the measured element concentrations in the bivalve Arctica islandica. Geochemistry, Geophysics, Geosystems 12.  https://doi.org/10.1029/2011GC003630.CrossRefGoogle Scholar
  45. Krause-Nehring, J., T. Brey, and S.R. Thorrold. 2012. Centennial records of lead contamination in northern Atlantic bivalves (Arctica islandica). Marine Pollution Bulletin 64 (2): 233–240.  https://doi.org/10.1016/j.marpolbul.2011.11.028.CrossRefGoogle Scholar
  46. Lacey, J.H., M.J. Leng, E.N. Peckover, J.R. Dean, T. Wilke, A. Francke, X. Zhang, A. Masi, and B. Wagner. 2018. Investigating the environmental interpretation of oxygen and carbon isotope data from whole and fragmented bivalve shells. Quaternary Science Reviews 194: 55–61.  https://doi.org/10.1016/j.quascirev.2018.06.025.CrossRefGoogle Scholar
  47. Livingstone, D.M., and A.F. Lotter. 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: A case study with palaeolimnological implication. Journal of Paleolimnology 19: 181–198.  https://doi.org/10.1023/a:1007904817619.CrossRefGoogle Scholar
  48. Lorens, R.B., and M.L. Bender. 1980. The impact of solution chemistry on Mytilus edulis calcite and aragonite. Geochimica et Cosmochimica Acta 44: 1265–1278.  https://doi.org/10.1016/0016-7037(80)90087-3.CrossRefGoogle Scholar
  49. Lorrain, A., D.P. Gillikin, Y.M. Paulet, L. Chauvaud, A. Le Mercier, J. Navez, and L. André. 2005. Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus. Geology 33: 965–968.  https://doi.org/10.1130/G22048.1.CrossRefGoogle Scholar
  50. McCombie, A.M. 1959. Some relations between air temperatures and the surface water temperatures of lakes. Limnology and Oceanography 4: 252–258.  https://doi.org/10.4319/lo.1959.4.3.0252.CrossRefGoogle Scholar
  51. McConnaughey, T.A., and D.P. Gillikin. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28: 287–299.  https://doi.org/10.1007/s00367-008-0116-4.CrossRefGoogle Scholar
  52. McCulloch, M., G. Mortimer, T. Esat, L. Xianhua, B. Pillans, and J. Chappell. 1996. High resolution windows into early Holocene climate: Sr/Ca coral records from the Huon Peninsula. Earth and Planetary Science Letters 138: 169–178.  https://doi.org/10.1016/0012-821X(95)00230-A.CrossRefGoogle Scholar
  53. Milton, D.A., and S.R. Chenery. 1998. The effect of otolith storage methods on the concentrations of elements detected by laser-ablation ICPMS. Journal of Fish Biology 53: 785–794.  https://doi.org/10.1006/jfbi.1998.0745.CrossRefGoogle Scholar
  54. Mitsuguchi, T., E. Matsumoto, O. Abe, T. Uchida, and P.J. Isdale. 1996. Mg / Ca Thermometry in Coral Skeletons. Science 274 (5289): 961–963.CrossRefGoogle Scholar
  55. Montagna, P., M. McCulloch, E. Douville, M. López Correa, J. Trotter, R. Rodolfo-Metalpa, D. Dissard, et al. 2014. Li/Mg systematics in scleractinian corals: Calibration of the thermometer. Geochimica et Cosmochimica Acta 132: 288–310.  https://doi.org/10.1016/j.gca.2014.02.005.CrossRefGoogle Scholar
  56. Mook, W.G. 1971. Paleotemperatures and chlorinities from stable carbon and oxygen isotopes in shell carbonate. Palaeogeography, Palaeoclimatology, Palaeoecology 9: 245–263.  https://doi.org/10.1016/0031-0182(71)90002-2.CrossRefGoogle Scholar
  57. Mouchi, V., M. de Rafélis, F. Lartaud, M. Fialin, and E. Verrecchia. 2013. Chemical labelling of oyster shells used for time-calibrated high-resolution Mg/Ca ratios: A tool for estimation of past seasonal temperature variations. Palaeogeography, Palaeoclimatology, Palaeoecology 373: 66–74.  https://doi.org/10.1016/j.palaeo.2012.05.023.CrossRefGoogle Scholar
  58. O’Neil, D.D., and D.P. Gillikin. 2014. Do freshwater mussel shells record road-salt pollution? Scientific Reports 4: 7168.  https://doi.org/10.1038/srep07168.CrossRefGoogle Scholar
  59. Owen, E.F., A.D. Wanamaker, S.C. Feindel, B.R. Schöne, and P.D. Rawson. 2008. Stable carbon and oxygen isotope fractionation in bivalve (Placopecten magellanicus) larval aragonite. Geochimica et Cosmochimica Acta 72: 4687–4698.  https://doi.org/10.1016/j.gca.2008.06.029.CrossRefGoogle Scholar
  60. Paton, C., J. Hellstrom, B. Paul, J. Woodhead, and J. Hergt. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26: 2508.  https://doi.org/10.1039/c1ja10172b.CrossRefGoogle Scholar
  61. Poulain, C., A. Lorrain, R. Mas, D.P. Gillikin, F. Dehairs, R. Robert, and Y.M. Paulet. 2010. Experimental shift of diet and DIC stable carbon isotopes: Influence on shell δ13C values in the Manila clam Ruditapes philippinarum. Chemical Geology 272: 75–82.  https://doi.org/10.1016/j.chemgeo.2010.02.006.CrossRefGoogle Scholar
  62. Poulain, C., D.P. Gillikin, J. Thébault, J.M. Munaron, M. Bohn, R. Robert, Y.M. Paulet, and A. Lorrain. 2015. An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells. Chemical Geology 396: 42–50.  https://doi.org/10.1016/j.chemgeo.2014.12.019.CrossRefGoogle Scholar
  63. Sano, Y., S. Kobayashi, K. Shirai, N. Takahata, K. Matsumoto, T. Watanabe, K. Sowa, and K. Iwai. 2012. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nature Communications 3: 761.  https://doi.org/10.1038/ncomms1763.CrossRefGoogle Scholar
  64. Schöne, B.R. 2008. The curse of physiology—Challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Marine Letters 28: 269–285.  https://doi.org/10.1007/s00367-008-0114-6.CrossRefGoogle Scholar
  65. Schöne, B.R., and J. Fiebig. 2009. Seasonality in the North Sea suring the Allerød and Late Medieval Climate Optimum using bivalve sclerochronology. International Journal of Earth Sciences 98: 83–98.CrossRefGoogle Scholar
  66. Schöne, B.R., and D.P. Gillikin. 2013. Unraveling environmental histories from skeletal diaries—Advances in sclerochronology. Palaeogeography, Palaeoclimatology, Palaeoecology 373: 1–5.  https://doi.org/10.1016/j.palaeo.2012.11.026.CrossRefGoogle Scholar
  67. Schöne, B.R., A.D. Freyre Castro, J. Fiebig, S.D. Houk, W. Oschmann, and I. Kröncke. 2004. Sea surface water temperatures over the period 1884-1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 212: 215–232.  https://doi.org/10.1016/j.palaeo.2004.05.024.CrossRefGoogle Scholar
  68. Schöne, B.R., Z. Zhang, P. Radermacher, J. Thébault, D.E. Jacob, E.V. Nunn, and A.-F. Maurer. 2011. Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 302: 52–64.  https://doi.org/10.1016/j.palaeo.2010.03.016.CrossRefGoogle Scholar
  69. Schöne, B.R., K. Schmitt, and M. Maus. 2017. Effects of sample pretreatment and external contamination on bivalve shell and Carrara marble δ18O and δ13C signatures. Palaeogeography, Palaeoclimatology, Palaeoecology 484: 22–32.  https://doi.org/10.1016/j.palaeo.2016.10.026.CrossRefGoogle Scholar
  70. Sinclair, D.J., L. Kinsley, and M.T. McCulloch. 1998. High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochimica et Cosmochimica Acta 62: 1889–1901.  https://doi.org/10.1016/S0016-7037(98)00112-4.CrossRefGoogle Scholar
  71. Stecher, H.A., D.E. Krantz, C.J. Lord, G.W. Luther, and K.W. Bock. 1996. Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells. Geochimica et Cosmochimica Acta 60: 3445–3456.  https://doi.org/10.1016/0016-7037(96)00179-2.CrossRefGoogle Scholar
  72. Surge, D., and K.C. Lohmann. 2008. Evaluating Mg/Ca ratios as a temperature proxy in the estuarine oyster, Crassostrea virginica. Journal of Geophysical Research 113: 1–9.CrossRefGoogle Scholar
  73. Surge, D., and K.J. Walker. 2006. Geochemical variation in microstructural shell layers of the southern quahog (Mercenaria campechiensis): Implications for reconstructing seasonality. Palaeogeography, Palaeoclimatology, Palaeoecology 237: 182–190.  https://doi.org/10.1016/j.palaeo.2005.11.016.CrossRefGoogle Scholar
  74. Takesue, R.K., and A. van Geen. 2004. Mg/Ca, Sr/Ca, and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region. Geochimica et Cosmochimica Acta 68: 3845–3861.  https://doi.org/10.1016/j.gca.2004.03.021.CrossRefGoogle Scholar
  75. Thébault, J., L. Chauvaud, S. L’Helguen, J. Clavier, A. Barats, S. Jacquet, C. Pécheyran, and D. Amouroux. 2009a. Barium and molybdenum records in bivalve shells: Geochemical proxies for phytoplankton dynamics in coastal environments? Limnology and Oceanography 54: 1002–1014.  https://doi.org/10.4319/lo.2009.54.3.1002.CrossRefGoogle Scholar
  76. Thébault, J., B.R. Schöne, N. Hallmann, M. Barth, and E.V. Nunn. 2009b. Investigation of Li/Ca variations in aragonitic shells of the ocean quahog Arctica islandica, northeast Iceland. Geochemistry, Geophysics, Geosystems 10.  https://doi.org/10.1029/2009GC002789.CrossRefGoogle Scholar
  77. Tindall, J., R. Flecker, P. Valdes, D.N. Schmidt, P. Markwick, and J. Harris. 2010. Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean-atmosphere GCM: Implications for reconstructing early Eocene climate. Earth and Planetary Science Letters 292: 265–273.  https://doi.org/10.1016/j.epsl.2009.12.049.CrossRefGoogle Scholar
  78. Tyler, J.J., M.J. Leng, H.J. Sloane, D. Sachse, and G. Gleixner. 2008. Oxygen isotope ratios of sedimentary biogenic silica reflect the European transcontinental climate gradient. Journal of Quaternary Science 23: 341–350.  https://doi.org/10.1002/jqs.CrossRefGoogle Scholar
  79. Tynan, S., B.N. Opdyke, M. Walczak, S. Eggins, and A. Dutton. 2016. Assessment of Mg/Ca in Saccostrea glomerata ( the Sydney rock oyster ) shell as a potential temperature record. Palaeogeography, Palaeoclimatology, Palaeoecology 484: 79–88.  https://doi.org/10.1016/j.palaeo.2016.08.009.CrossRefGoogle Scholar
  80. Urey, H.C., H.A. Lowenstam, S. Epstein, and C.R. McKinney. 1951. Measurement of paleotemperatures and temperatures of the Upper Cretacceous of England, Denmark and the Southeastern United States. Bulletin of the Geological Society of America 62: 399–416.CrossRefGoogle Scholar
  81. Vander Putten, E., F. Dehairs, E. Keppens, and W. Baeyens. 2000. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis : Environmental and biological controls. Geochimica et Cosmochimica Acta 64: 997–1011.CrossRefGoogle Scholar
  82. Vonhof, H.B., J.C.A. Joordens, M.L. Noback, J.H.J.L. van der Lubbe, C.S. Feibel, and D. Kroon. 2013. Environmental and climatic control on seasonal stable isotope variation of freshwater molluscan bivalves in the Turkana Basin (Kenya). Palaeogeography, Palaeoclimatology, Palaeoecology 383–384: 16–26.  https://doi.org/10.1016/j.palaeo.2013.04.022.CrossRefGoogle Scholar
  83. Wanamaker, A.D., and D.P. Gillikin. 2018. Strontium, magnesium, and barium incorporation in aragonitic shells of juvenile Arctica islandica : Insights from temperature controlled experiments. Chemical Geology.  https://doi.org/10.1016/j.chemgeo.2018.02.012.CrossRefGoogle Scholar
  84. Wanamaker, A.D., K.J. Kreutz, T. Wilson, H.W. Borns, D.S. Introne, and S. Feindel. 2008. Experimentally determined Mg/Ca and Sr/Ca ratios in juvenile bivalve calcite for Mytilus edulis: Implications for paleotemperature reconstructions. Geo-Marine Letters 28 (5-6): 359–368.  https://doi.org/10.1007/s00367-008-0112-8.CrossRefGoogle Scholar
  85. Wanamaker, A.D., K.J. Kreutz, B.R. Schöne, K.A. Maasch, A.J. Pershing, H.W. Borns, D.S. Introne, and S. Feindel. 2009. A Late Holocene paleo-productivity record int he western Gulf of Maine, USA, inferred from growth histories of the long-lived ocean quahog (Arctica isalandica). International Journal of Earth Sciences 98: 19–29.CrossRefGoogle Scholar
  86. Weber, J.N. 1973. Incorporation of strontium into reef coral skeletal carbonate. Geochimica et Cosmochimica Acta 37: 2173–2190.  https://doi.org/10.1016/0016-7037(73)90015-X.CrossRefGoogle Scholar
  87. Wells, F.E., and T.J. Threlfall. 1982a. Salinity and temperture tolerance of Hydrococcus brazieri (T. Woods, 1876) and Arthritica semen (Menke, 1843) from the Peel-Harvey estuarine system, Western Australia. Journal of the Malacological Society of Australia 5: 151–156.CrossRefGoogle Scholar
  88. Wells, F.E., and T.J. Threlfall. 1982b. Reproductive strategies of Hydrococcus brazieri (Tenison Woods , 1876) and Arthritica semen (Menke , 1843) in Peel Inlet, Western Australia. Journal of the Malacological Society of Australia 5: 157–166.CrossRefGoogle Scholar
  89. Wells, F.E., and T.J. Threlfall. 1982c. Density fluctuations, growth and dry tissue production of Hydrococcus brazieri ( Tenison Woods, 1876) and Arthritica semen (Menke, 1843) in peel inlet, Western Australia. Journal of Molluscan Studies 48: 310–320.CrossRefGoogle Scholar
  90. Wurster, C.M., and W.P. Patterson. 2001. Seasonal variation in stable oxygen and carbon isotope values recovered from modern lacustrine freshwater molluscs: Paleoclimatological implications for sub-weekly temperature records. Journal of Paleolimnology 26: 205–218.  https://doi.org/10.1023/A:1011194011250.CrossRefGoogle Scholar
  91. Yan, H., D. Shao, Y. Wang, and L. Sun. 2013. Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: A new high-resolution SST proxy. Geochimica et Cosmochimica Acta 112: 52–65.  https://doi.org/10.1016/j.gca.2013.03.007.CrossRefGoogle Scholar
  92. Zhao, L., B.R. Schöne, and R. Mertz-Kraus. 2017. Controls on strontium and barium incorporation into freshwater bivalve shells (Corbicula fluminea). Palaeogeography, Palaeoclimatology, Palaeoecology 465: 386–394.  https://doi.org/10.1016/j.palaeo.2015.11.040.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2019

Authors and Affiliations

  1. 1.Department of Earth Sciences and Sprigg Geobiology CentreThe University of AdelaideAdelaideAustralia
  2. 2.Southern Seas Ecology Laboratories and the Environment Institute, School of Biological SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations