Advertisement

Estuaries and Coasts

, Volume 42, Issue 8, pp 2170–2183 | Cite as

Fish Diet Shifts Associated with the Northern Gulf of Mexico Hypoxic Zone

  • Cassandra N. GlaspieEmail author
  • Melissa Clouse
  • Klaus Huebert
  • Stuart A. Ludsin
  • Doran M. Mason
  • James J. Pierson
  • Michael R. Roman
  • Stephen B. Brandt
Article

Abstract

The occurrence of low dissolved oxygen (hypoxia) in coastal waters may alter trophic interactions within the water column. This study identified a threshold at which hypoxia in the northern Gulf of Mexico (NGOMEX) alters composition of fish catch and diet composition (stomach contents) of fishes using fish trawl data from summers 2006–2008. Hypoxia in the NGOMEX impacted fish catch per unit effort (CPUE) and diet below dissolved oxygen thresholds of 1.15 mg L−1 (for fish CPUE) and 1.71 mg L−1 (for diet). CPUE of many fish species was lower at hypoxic sites (≤ 1.15 mg L −1) as compared to normoxic regions (> 1.15 mg L −1), including the key recreational or commercial fish species Atlantic croaker Micropogonias undulatus and red snapper Lutjanus campechanus. Overall, fish diets from hypoxic sites (≤ 1.71 mg L−1) and normoxic sites (> 1.71 mg L−1) differed. Fish caught in normoxic regions consumed a greater mass of benthic prey (ex. gastropods, polychaetes) than fish caught in hypoxic regions. Hypoxia may increase predation risk of small zooplankton, with observations of increased mass of small zooplankton in fish stomachs when bottom hypoxia was present. Changes in contributions of small zooplankton and benthic prey to fish diet in hypoxic areas may alter energy flow in the NGOMEX pelagic food web and should be considered in fishery management.

Keywords

Fish diet Dissolved oxygen Predation Fishery 

Notes

Acknowledgements

We thank James Roberts, Craig Stow, Stephen Lozano, Jennifer Metes, Aly Peacy, and Katharine Bush for help with collecting the field data. We also thank the captains and crew of the RV Pelican for their help with field sampling.

Funding information

This research was supported by NOAA-CSCOR Award NA06NOS4780148 and NA09NOS4780198 and National Academies award NAS-GRP-2000006418. This is NOAA GLERL contribution No. 1931 and UMCES contribution No. 5713.

Supplementary material

12237_2019_626_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1994 kb)
12237_2019_626_MOESM2_ESM.jpg (8.6 mb)
ESM 2 (JPG 8796 kb)
12237_2019_626_MOESM3_ESM.csv (2.4 mb)
ESM 3 (CSV 2492 kb)
12237_2019_626_MOESM4_ESM.r (93 kb)
ESM 4 (R 92 kb)

References

  1. Aku, Peter M.K., and William M. Tonn. 1999. Effects of hypolimnetic oxygenation on the food resources and feeding ecology of cisco in Amisk Lake, Alberta. Transactions of the American Fisheries Society 128 (1): 17–30.CrossRefGoogle Scholar
  2. Anderson, M.J. 2005. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance.  https://doi.org/10.1002/9781118445112.stat07841.
  3. Anderson, Marti J. 2008. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26 (1): 32–46.CrossRefGoogle Scholar
  4. Anderson, M. J. 2014. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online.  https://doi.org/10.1002/9781118445112.stat07841, .
  5. Ara, Koichi. 2001. Length-weight relationships and chemical content of the planktonic copepods in the Cananeia Lagoon estuarine system, Sao Paulo, Brazil. Plankton Biology and Ecology 48: 121–127.Google Scholar
  6. Arend, Kristin K., Dmitry Beletsky, Joseph DePinto, Stuart A. Ludsin, James J. Roberts, Daniel K. Rucinski, Donald Scavia, David J. Schwab, and Thomas O. Höök. 2011. Seasonal and interannual effects of hypoxia on fish habitat quality in Central Lake Erie. Freshwater Biology 56 (2): 366–383.  https://doi.org/10.1111/j.1365-2427.2010.02504.x.CrossRefGoogle Scholar
  7. Baker, Matthew E., and Ryan S. King. 2010. A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods in Ecology and Evolution 1 (1): 25–37.  https://doi.org/10.1111/j.2041-210X.2009.00007.x.CrossRefGoogle Scholar
  8. Benedetti-Cecchi, Lisandro, and Giacomo Chato Osio. 2007. Replication and mitigation of effects of confounding variables in environmental impact assessment: Effect of marinas on rocky-shore assemblages. Marine Ecology Progress Series 334: 21–35.  https://doi.org/10.3354/meps334021.CrossRefGoogle Scholar
  9. Bethea, Dana M., Loraine Hale, John K. Carlson, Enric Cortés, Charles A. Manire, and James Gelsleichter. 2007. Geographic and ontogenetic variation in the diet and daily ration of the bonnethead shark, Sphyrna tiburo, from the eastern Gulf of Mexico. Marine Biology 152 (5): 1009–1020.  https://doi.org/10.1007/s00227-007-0728-7.CrossRefGoogle Scholar
  10. Bianchi, Thomas S., Steven F. DiMarco, James H. Cowan, Robert D. Hetland, Piers Chapman, John W. Day, and Mead A. Allison. 2010. The science of hypoxia in the northern Gulf of Mexico: A review. Science of the Total Environment 408 (7): 1471–1484.  https://doi.org/10.1016/j.scitotenv.2009.11.047.CrossRefGoogle Scholar
  11. Brandt, Stephen B., and Doran M. Mason. 2003. Effect of nutrient loading on Atlantic menhaden (Brevoortia tyrannus) growth rate potential in the Patuxent River. Estuaries 26 (2): 298–309.  https://doi.org/10.1007/BF02695968.CrossRefGoogle Scholar
  12. Brandt, Stephen B., Marco Costantini, Sarah Kolesar, Stuart A. Ludsin, Doran M. Mason, Christopher M. Rae, and Hongyan Zhang. 2011. Does hypoxia reduce habitat quality for Lake Erie walleye (Sander vitreus)? A bioenergetics perspective. Canadian Journal of Fisheries and Aquatic Sciences 68 (5): 857–879.  https://doi.org/10.1139/f2011-018.CrossRefGoogle Scholar
  13. Breitburg, Denise L., Timothy Loher, Carol A. Pacey, and Adam Gerstein. 1997. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecological Monographs 67 (4): 489–507.CrossRefGoogle Scholar
  14. Breitburg, Denise L., Aaron T. Adamack, Kenneth A. Rose, Sarah E. Kolesar, Beth Decker, Jennifer E. Purcell, Julie E. Keister, and James H. Cowan. 2003. The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary. Estuaries 26 (2): 280–297.CrossRefGoogle Scholar
  15. Breitburg, Denise L., J. Kevin Craig, Richard S. Fulford, Kenneth A. Rose, Walter R. Boynton, Damian C. Brady, Benjamin J. Ciotti, et al. 2009. Nutrient enrichment and fisheries exploitation: Interactive effects on estuarine living resources and their management. Hydrobiologia 629 (1): 31–47.  https://doi.org/10.1007/s10750-009-9762-4.CrossRefGoogle Scholar
  16. Buchheister, Andre, Christopher F. Bonzek, James Gartland, and Robert J. Latour. 2013. Patterns and drivers of the demersal fish community of chesapeake bay. Marine Ecology Progress Series 481: 161–180.  https://doi.org/10.3354/meps10253.CrossRefGoogle Scholar
  17. Cadman, Linda R., and Michael P. Weinstein. 1985. Size-weight relationships of postecdysial juvenile blue crabs (Callinectes sapidus Rathbun) from the Lower Chesapeake Bay. Journal of Crustacean Biology 5 (2): 306–310.CrossRefGoogle Scholar
  18. Chisholm, Laurie A., and John C. Roff. 1990. Size-weight relationships and biomass of tropical neritic copepods off Kingston, Jamaica. Marine Biology 106 (1): 71–77.CrossRefGoogle Scholar
  19. Costantini, Marco, Stuart A. Ludsin, Doran M. Mason, Xinsheng Zhang, William C. Boicourt, and Stephen B. Brandt. 2008. Effect of hypoxia on habitat quality of striped bass (Morone saxatilis) in Chesapeake Bay. Canadian Journal of Fisheries and Aquatic Sciences 65 (5): 989–1002.  https://doi.org/10.1139/f08-021.CrossRefGoogle Scholar
  20. Craig, J. Kevin. 2012. Aggregation on the edge: Effects of hypoxia avoidance on the spatial distribution of brown shrimp and demersal fishes in the Northern Gulf of Mexico. Marine Ecology Progress Series 445: 75–95.  https://doi.org/10.3354/meps09437.CrossRefGoogle Scholar
  21. Craig, J. Kevin, and Larry B. Crowder. 2005. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf. Marine Ecology Progress Series 294: 79–94.  https://doi.org/10.3354/meps294079.CrossRefGoogle Scholar
  22. de Mutsert, Kim, Jeroen Steenbeek, Kristy Lewis, Joe Buszowski, James H. Cowan, and Villy Christensen. 2016. Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model. Ecological Modelling 331: 142–150.  https://doi.org/10.1016/j.ecolmodel.2015.10.013.CrossRefGoogle Scholar
  23. Decker, Mary Beth, Denise L. Breitburg, and Jennifer E. Purcell. 2004. Effects of low dissolved oxygen on zooplankton predation by the ctenophore Mnemiopsis leidyi. Marine Ecology Progress Series 280: 163–172.  https://doi.org/10.3354/meps280163.CrossRefGoogle Scholar
  24. Diaz, Robert J., and Rutger Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321 (5891): 926–929.  https://doi.org/10.1126/science.1156401.CrossRefGoogle Scholar
  25. DiCiccio, Thomas J., and Bradley Efron. 1996. Bootstrap cinfidence intervals. Statistical Science 11: 189–212.  https://doi.org/10.1007/sl0869-007-9037-x.CrossRefGoogle Scholar
  26. Domenici, Paolo, Cristel Lefrançois, and A. Shingles. 2007. Hypoxia and the antipredator behaviours of fishes. Philosophical Transactions of the Royal Society B: Biological Sciences 362 (1487): 2105–2121.  https://doi.org/10.1098/rstb.2007.2103.CrossRefGoogle Scholar
  27. Eby, Lisa A., and Larry B. Crowder. 2002. Hypoxia-based habitat compression in the Neuse River Estuary: context-dependent shifts in behavioral avoidance thresholds. Canadian Journal of Fisheries and Aquatic Sciences 59 (6): 952–965.  https://doi.org/10.1139/f02-067.CrossRefGoogle Scholar
  28. Ekau, Werner, Holger Auel, Hans O. Portner, and Denis Gilbert. 2010. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7 (5): 1669–1699.  https://doi.org/10.5194/bg-7-1669-2010.CrossRefGoogle Scholar
  29. Elliott, David T., James J. Pierson, and Michael R. Roman. 2013. Predicting the effects of coastal hypoxia on vital rates of the planktonic copepod Acartia tonsa Dana. PLoS One 8 (5): e63987.  https://doi.org/10.1371/journal.pone.0063987.CrossRefGoogle Scholar
  30. Fontaine, Clark T., and Richard A. Neal. 1971. Length-weight relations for three commercially important penaeid shrimp of the Gulf of Mexico. Transactions of the American Fisheries Society 100 (3): 584–586.CrossRefGoogle Scholar
  31. Glaspie, Cassandra N., Melissa A. Clouse, Stuart A. Ludsin, Doran M. Mason, Michael R. Roman, Craig A. Stow, and Stephen B. Brandt. 2018. Effect of hypoxia on diet of Atlantic Bumpers in the Northern Gulf of Mexico. Transactions of the American Fisheries Society 147 (4): 740–748.  https://doi.org/10.1002/tafs.10063.CrossRefGoogle Scholar
  32. Hartigan, John A., and Melissa A. Wong. 1979. A k-means clustering algorithm. Applied Statistics 28: 100–108.Google Scholar
  33. Hazen, Elliott L., J. Kevin Craig, Caroline P. Good, and Larry B. Crowder. 2009. Vertical distribution of fish biomass in hypoxic waters on the Gulf of Mexico shelf. Marine Ecology Progress Series 375: 195–207.  https://doi.org/10.3354/meps07791.CrossRefGoogle Scholar
  34. Hennig, Christian. 2007. Cluster-wise assessment of cluster stability. Computational Statistics and Data Analysis 52 (1): 258–271.  https://doi.org/10.1016/j.csda.2006.11.025.CrossRefGoogle Scholar
  35. Hennig, Christian. 2008. Dissolution point and isolation robustness: Robustness criteria for general cluster analysis methods. Journal of Multivariate Analysis 99 (6): 1154–1176.  https://doi.org/10.1016/j.jmva.2007.07.002.CrossRefGoogle Scholar
  36. Hoffmayer, Eric R., and Glenn R. Parsons. 2003. Food habits of three shark species from the Mississippi Sound in the Northern Gulf of Mexico. Southeastern Naturalist 2 (2): 271–280.CrossRefGoogle Scholar
  37. Hopcroft, Russell R., John C. Roff, and Heather A. Bouman. 1998. Zooplankton growth rate: the larvaceans Appendicularia, Fritillaria and Oikopleura in tropical waters. Journal of Plankton Research 20 (3): 539–555.CrossRefGoogle Scholar
  38. Hughes, Brent B., Matthew D. Levey, Monique C. Fountain, Aaron B. Carlisle, Francisco P. Chavez, and Mary G. Gleason. 2015. Climate mediates hypoxic stress on fish diversity and nursery function at the land–sea interface. Proceedings of the National Academy of Sciences 112 (26): 8025–8030.  https://doi.org/10.1073/pnas.1505815112.CrossRefGoogle Scholar
  39. Karnauskas, Mandy, Christopher R. Kelble, Seann Regan, Charline Quenée, Rebecca Allee, Michael Jepson, Amy Freitag, et al. 2017. 2017 Ecosystem Status Report Update for the Gulf of Mexico.Google Scholar
  40. Keister, Julie E., Edward D. Houde, and Denise L. Breitburg. 2000. Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay. Marine Ecology Progress Series 205: 43–59.  https://doi.org/10.3354/meps205043.CrossRefGoogle Scholar
  41. Kimmel, David G., William C. Boicourt, James J. Pierson, Michael R. Roman, and Xinsheng Zhang. 2009. A comparison of the mesozooplankton response to hypoxia in Chesapeake Bay and the northern Gulf of Mexico using the biomass size spectrum. Journal of Experimental Marine Biology and Ecology 381. Elsevier B.V.: S65–S73.  https://doi.org/10.1016/j.jembe.2009.07.012.
  42. Kimmel, David G., William C. Boicourt, James J. Pierson, Michael R. Roman, and Xinsheng Zhang. 2010. The vertical distribution and diel variability of mesozooplankton biomass, abundance and size in response to hypoxia in the northern Gulf of Mexico USA. Journal of Plankton Research 32 (8): 1185–1202.CrossRefGoogle Scholar
  43. Langseth, Brian J., Kevin M. Purcell, J. Kevin Craig, Amy M. Schueller, Joseph W. Smith, Kyle W. Shertzer, Sean Creekmore, Kenneth A. Rose, and Katja Fennel. 2014. Effect of changes in dissolved oxygen concentrations on the spatial dynamics of the Gulf menhaden fishery in the Northern Gulf of Mexico. Marine and Coastal Fisheries 6 (1): 223–234.  https://doi.org/10.1080/19425120.2014.949017.CrossRefGoogle Scholar
  44. Long, W. Christopher, and Rochelle D. Seitz. 2008. Trophic interactions under stress: Hypoxia enhances foraging in an estuarine food web. Marine Ecology Progress Series 362: 59–68.  https://doi.org/10.3354/meps07395.CrossRefGoogle Scholar
  45. Long, W. Christopher, Bryce J. Brylawski, and Rochelle D. Seitz. 2008. Behavioral effects of low dissolved oxygen on the bivalve Macoma balthica. Journal of Experimental Marine Biology and Ecology 359 (1): 34–39.  https://doi.org/10.1016/j.jembe.2008.02.013.CrossRefGoogle Scholar
  46. Ludsin, Stuart A., Xinsheng Zhang, Stephen B. Brandt, Michael R. Roman, William C. Boicourt, Doran M. Mason, and Marco Costantini. 2009. Hypoxia-avoidance by planktivorous fish in Chesapeake Bay: Implications for food web interactions and fish recruitment. Journal of Experimental Marine Biology and Ecology 381: 121–131.  https://doi.org/10.1016/j.jembe.2009.07.016.CrossRefGoogle Scholar
  47. Manooch, C.S., and W.T. Hogarth. 1983. Stomach contents and giant trematodes from wahoo, Acanthocybium solanderi, collected along the South Atlantic and Gulf coasts of the United States. Bulletin of Marine Science 33: 227–238.Google Scholar
  48. Meyer, Gabriele H., and James S. Franks. 1996. Food of cobia, Rachycentron canadum, from the Northcentral Gulf of Mexico. Gulf Research Reports 9: 161–167.  https://doi.org/10.18785/grr.0903.02.CrossRefGoogle Scholar
  49. NMFS. 2017a. Fisheries Economics of the United States 2015. NOAA Technical Memorandum: 247.  https://doi.org/10.1017/CBO9781107415324.004.
  50. NMFS. 2017b. Fisheries Economics of the United States 2015. Washington, D.C.: NOAA Technical Memorandum.  https://doi.org/10.1017/CBO9781107415324.004.CrossRefGoogle Scholar
  51. NMFS. 2018. Fisheries of the United States.  https://doi.org/10.2307/j.ctv157bc5.9.
  52. Pihl, Leif, Susanne P. Baden, Robert J. Diaz, and Linda C. Schaffner. 1992. Hypoxia-induced structural changes in the diet of bottom-feeding fish and Crustacea. Marine Biology 112 (3): 349–361.  https://doi.org/10.1007/BF00356279.CrossRefGoogle Scholar
  53. Pothoven, Steven A., Henry A. Vanderploeg, Thomas O. Höök, and Stephen B. Brandt. 2009. Feeding ecology of emerald shiners and rainbow smelt in central Lake Erie. Journal of Great Lakes Resources 35 (2): 190–198.CrossRefGoogle Scholar
  54. Prince, Eric D., and C. Phillip Goodyear. 2006. Hypoxia-based habitat compression of tropical pelagic fishes. Fisheries Oceanography 15 (6): 451–464.  https://doi.org/10.1111/j.1365-2419.2005.00393.x.CrossRefGoogle Scholar
  55. R Core Team. 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  56. Rabalais, Nancy N., and R. Eugene Turner. 2001. Hypoxia in the northern Gulf of Mexico: Description, causes and change. In Coastal Hypoxia: Consequences for Living Resources and Ecosystems, ed. Nancy N. Rabalais and R. Eugene Turner. Washington D. C.: American Geophysical Union.CrossRefGoogle Scholar
  57. Rabotyagov, Sergey S., Todd D. Campbell, Michael White, Jeffrey G. Arnold, Atwood Jay, M. Lee Norfleet, Catherine L. Kling, et al. 2014. Cost-effective targeting of conservation investments to reduce the northern Gulf of Mexico hypoxic zone. Proceedings of the National Academy of Sciences 111 (52): 18530–18535.  https://doi.org/10.1073/pnas.1405837111.CrossRefGoogle Scholar
  58. Rahel, Frank J., and Julie W. Nutzman. 1994. Foraging in a lethal environment: Fish predation in hypoxic waters of a stratified lake. Ecology 75 (5): 1246–1253.CrossRefGoogle Scholar
  59. Remsen, Andrew, Thomas L. Hopkins, and Scott Samson. 2004. What you see is not what you catch: A comparison of concurrently collected net, Optical Plankton Counter, and Shadowed Image Particle Profiling Evaluation Recorder data from the northeast Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers 51 (1): 129–151.CrossRefGoogle Scholar
  60. Renaud, Maurice L. 1986. Hypoxia in Louisiana coastal waters during 1983: Implications for fisheries. Fishery Bulletin 84 (10): 19–26.  https://doi.org/10.1063/1.1453944.CrossRefGoogle Scholar
  61. Roberts, James J., Tomas O. Höök, Stuart A. Ludsin, Steven A. Pothoven, Henry A. Vanderploeg, and Stephen B. Brandt. 2009. Effects of hypolimnetic hypoxia on foraging and distributions of Lake Erie yellow perch. Journal of Experimental Marine Biology and Ecology 381: S132–S142.  https://doi.org/10.1016/j.jembe.2009.07.017.CrossRefGoogle Scholar
  62. Roman, Michael R., James J. Pierson, David G. Kimmel, William C. Boicourt, and Xinsheng Zhang. 2012. Impacts of hypoxia on zooplankton spatial distributions in the Northern Gulf of Mexico. Estuaries and Coasts 35 (5): 1261–1269.  https://doi.org/10.1007/s12237-012-9531-x.CrossRefGoogle Scholar
  63. Roman, Michael R., Stephen B. Brandt, Edward D. Houde, and James J. Pierson. 2019. Interactive effects of hypoxia and temperature on coastal pelagic zooplankton and fish. Frontiers in Marine Science 6: 139.  https://doi.org/10.3389/fmars.2019.00139.CrossRefGoogle Scholar
  64. Rose, Kenneth A., John C. Roff, and Russell R. Hopcroft. 2004. Production of Penilia avirostris in Kingston Harbour, Jamaica. Journal of Plankton Research 26 (6): 605–615.CrossRefGoogle Scholar
  65. Rose, Kenneth A., Sean B. Creekmore, Dubravko Justić, Thomas Peter, J. Kevin Craig, Rachel Miller Neilan, Lixia Wang, Md S. Rahman, and David Kidwell. 2018. Modeling the population effects of hypoxia on Atlantic croaker (Micropogonias undulatus) in the Northwestern Gulf of Mexico. Estuaries and Coasts 41 (1): 233–254.  https://doi.org/10.1007/s12237-017-0266-6.CrossRefGoogle Scholar
  66. Shang, Eva H.H., and Rudolf S.S. Wu. 2004. Aquatic hypoxia is a teratogen and affects fish embryonic development. Environmental Science and Technology 38 (18): 4763–4767.  https://doi.org/10.1021/es0496423.CrossRefGoogle Scholar
  67. Stalder, L.C., and Nancy H. Marcus. 1997. Zooplankton responses to hypoxia: Behavioral patterns and survival of three species of calanoid copepods. Marine Biology 127 (4): 599–607.CrossRefGoogle Scholar
  68. Sutton, Tracy T., and Thomas L. Hopkins. 1996. Trophic ecology of the stomiid (Pisces: Stomiidae) fish assemblage of the eastern Gulf of Mexico: Strategies, selectivity and impact of a top mesopelagic predator group. Marine Biology 127 (2): 179–192.  https://doi.org/10.1007/BF00942102.CrossRefGoogle Scholar
  69. Taylor, J. Christopher, and Peter S. Rand. 2003. Spatial overlap and distribution of anchovies (Anchoa spp.) and copepods in a shallow stratified estuary. Aquatic Living Resources 16 (3): 191–196.  https://doi.org/10.1016/S0990-7440(03)00012-3.CrossRefGoogle Scholar
  70. Taylor, J. Christopher, Peter S. Rand, and Jacqueline Jenkins. 2007. Swimming behavior of juvenile anchovies (Anchoa spp.) in an episodically hypoxic estuary: Implications for individual energetics and trophic dynamics. Marine Biology 152 (4): 939–957.CrossRefGoogle Scholar
  71. Thomas, Peter, and Md. Saydur Rahman. 2012. Extensive reproductive disruption, ovarian masculinization and aromatase suppression in Atlantic croaker in the northern Gulf of Mexico hypoxic zone. Proceedings of the Royal Society B: Biological Sciences 279 (1726): 28–38.  https://doi.org/10.1098/rspb.2011.0529.CrossRefGoogle Scholar
  72. Thronson, Amanda, and Antonietta Quigg. 2008. Fifty-five years of fish kills in Coastal Texas. Estuaries and Coasts 31 (4): 802–813.  https://doi.org/10.1007/sl2237-008-9056-5.
  73. Tita, Guglielmo, Magda Vincx, and Gaston Desrosiers. 1999. Size spectra, body width and morphotypes of intertidal nematodes: An ecological interpretation. Journal of the Marine Biological Association of the United Kingdom 79 (6): 1007–1015.CrossRefGoogle Scholar
  74. Turner, R. Eugene, Nancy N. Rabalais, and Dubravko Justic. 2008. Gulf of Mexico hypoxia: Alternate states and a legacy. Environmental Science and Technology 42 (7): 2323–2327.CrossRefGoogle Scholar
  75. Uye, Shin-Ichi. 1982. Length-weight relationships of important zooplankton from the Inland Sea of Japan. Journal of the Oceanographical Society of Japan 38 (3): 149–158.CrossRefGoogle Scholar
  76. Vanderploeg, Henry A., Stuart A. Ludsin, Joann F. Cavaletto, Tomas O. Höök, Steven A. Pothoven, Stephen B. Brandt, James R. Liebig, and Gregory A. Lang. 2009a. Hypoxic zones as habitat for zooplankton in Lake Erie: Refuges from predation or exclusion zones? Journal of Experimental Marine Biology and Ecology 381: S108–S120.  https://doi.org/10.1016/j.jembe.2009.07.015.CrossRefGoogle Scholar
  77. Vanderploeg, Henry A., Stuart A. Ludsin, Steven A. Ruberg, Tomas O. Höök, Steven A. Pothoven, Stephen B. Brandt, Gregory A. Lang, James R. Liebig, and Joann F. Cavaletto. 2009b. Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie. Journal of Experimental Marine Biology and Ecology 381: S92–S107.  https://doi.org/10.1016/j.jembe.2009.07.027.CrossRefGoogle Scholar
  78. Vaquer-Sunyer, Raquel, and Carlos M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences 105 (1): 15452–15457.  https://doi.org/10.4319/lo.2007.52.1.0338.CrossRefGoogle Scholar
  79. Webber, Mona K., and John C. Roff. 1995. Annual biomass and production of the oceanic copepod community off Discovery Bay, Jamaica. Marine Biology 123 (3): 481–495.CrossRefGoogle Scholar
  80. Wells, R., J. David, James H. Cowan, and Brian Fry. 2008. Feeding ecology of red snapper Lutjanus campechanus in the northern Gulf of Mexico. Marine Ecology Progress Series 361: 213–225.  https://doi.org/10.3354/meps07425.CrossRefGoogle Scholar
  81. Zhang, G.T., and C.K. Wong. 2011. Changes in the planktonic copepod community in a landlocked bay in the subtropical coastal waters of Hong Kong during recovery from eutrophication. Hydrobiologia 666 (1): 277–288.  https://doi.org/10.1007/s10750-010-0422-5.CrossRefGoogle Scholar
  82. Zhang, Hongyan, Stuart A. Ludsin, Doran M. Mason, Aaron T. Adamack, Stephen B. Brandt, Xinsheng Zhang, David G. Kimmel, Michael R. Roman, and William C. Boicourt. 2009. Hypoxia-driven changes in the behavior and spatial distribution of pelagic fish and mesozooplankton in the northern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology 381: S80–S91.  https://doi.org/10.1016/j.jembe.2009.07.014.CrossRefGoogle Scholar
  83. Zhang, Hongyan, Doran M. Mason, Craig A. Stow, Aaron T. Adamack, Stephen B. Brandt, Xinsheng Zhang, David G. Kimmel, Michael R. Roman, William C. Boicourt, and Stuart A. Ludsin. 2014. Effects of hypoxia on habitat quality of pelagic planktivorous fishes in the northern gulf of Mexico. Marine Ecology Progress Series 505: 209–226.  https://doi.org/10.3354/meps10768.CrossRefGoogle Scholar
  84. Zielinski, S., P.G. Lee, and H.O. Portner. 2000. Metabolic performance of the squid Lolliguncula brevis during hypoxia: An analysis of the critical PO2. Journal of Experimental Marine Biology and Ecology 243 (2): 241–259.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2019

Authors and Affiliations

  1. 1.Department of Oceanography and Coastal SciencesLouisiana State UniversityBaton RougeUSA
  2. 2.School of PharmacyHampton UniversityHamptonUSA
  3. 3.Horn Point LaboratoryUniversity of Maryland Center for Environmental ScienceCambridgeUSA
  4. 4.Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal BiologyOhio State UniversityColumbusUSA
  5. 5.NOAA Great Lakes Environmental Research LaboratoryAnn ArborUSA
  6. 6.Department of Fisheries and WildlifeOregon State UniversityCorvallisUSA

Personalised recommendations