Advertisement

Hard Structures for Coastal Protection, Towards Greener Designs

  • T. SchooneesEmail author
  • A. Gijón Mancheño
  • B. Scheres
  • T. J. Bouma
  • R. Silva
  • T. Schlurmann
  • H. Schüttrumpf
Special Issue: Integrating Ecosystems and Coastal Engineering Practice

Abstract

Over recent years, many coastal engineering projects have employed the use of soft solutions as these are generally less environmentally damaging than hard solutions. However, in some cases, local conditions hinder the use of soft solutions, meaning that hard solutions have to be adopted or, sometimes, a combination of hard and soft measures is seen as optimal. This research reviews the use of hard coastal structures on the foreshore (groynes, breakwaters and jetties) and onshore (seawalls and dikes). The purpose, functioning and local conditions for which these structures are most suitable are outlined. A description is provided on the negative effects that these structures may have on morphological, hydrodynamic and ecological conditions. To reduce or mitigate these negative impacts, or to create new ecosystem services, the following nature-based adaptations are proposed and discussed: (1) applying soft solutions complementary to hard solutions, (2) mitigating morphological and hydrodynamic changes and (3) ecologically enhancing hard coastal structures. The selection and also the success of these potential adaptations are highly dependent on local conditions, such as hydrodynamic forcing, spatial requirements and socioeconomic factors. The overview provided in this paper aims to offer an interdisciplinary understanding, by giving general guidance on which type of solution is suitable for given characteristics, taking into consideration all aspects that are key for environmentally sensitive coastal designs. Overall, this study aims to provide guidance at the interdisciplinary design stage of nature-based coastal defence structures.

Keywords

Coastal structures Green infrastructure Building with nature Ecosystem engineering Nature-based solutions Environment-friendly engineering Ecosystem services 

Notes

Acknowledgements

The authors would like to express their gratitude to DAAD (German Academic Exchange Service) and Exceed Swindon (International Network on Sustainable Water Management in Developing Countries) for funding the Integrating Ecosystems in Coastal Engineering Practice (INECEP) Summer School.

References

  1. Airoldi, L., X. Turon, S. Perkol-Finkel, and M. Rius. 2015. Corridors for aliens but not for natives: Effects of marine urban sprawl at a regional scale. Diversity and Distributions. 21 (7): 755–768.  https://doi.org/10.1111/ddi.12301.Google Scholar
  2. Barber, T. 1999. Reef balls TM: An advanced technique to mimic natural reef systems using designed artificial reefs. In Abstracts of the 7th Scientific Conference on Artificial Reefs and Related Habitats, October, 1999, in San Remo, Italy.Google Scholar
  3. Bishop, M.J., M. Mayer-Pinto, L. Airoldi, L.B. Firth, R.L. Morris, L.H.L. Loke, S.J. Hawkins, L.A. Naylor, R.A. Coleman, S.Y. Chee, and K.A. Dafforn. 2017. Effects of ocean sprawl on ecological connectivity: Impacts and solutions. Journal of Experimental Marine Biology and Ecology. 492: 7–30.  https://doi.org/10.1016/j.jembe.2017.01.021.Google Scholar
  4. BMU. 2006. Integriertes Küstenzonenmanagement in Deutschland. Nationale Strategie für ein integriertes Küstenzonenmanagement (Bestandsaufnahme, Stand 2006). in German.Google Scholar
  5. Borsje, B.W., B.K. van Wesenbeeck, F. Dekker, P. Paalvast, T.J. Bouma, M.M. van Katwijk, and M.B. de Vries. 2011. How ecological engineering can serve in coastal protection. Ecological Engineering. 37 (2): 113–122.  https://doi.org/10.1016/j.ecoleng.2010.11.027.Google Scholar
  6. Bouma, T.J., M.B. De Vries, E. Low, G. Peralta, I.C. Tánczos, J. van de Koppel, and P.M.J. Herman. 2005. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 86 (8): 2187–2199.  https://doi.org/10.1890/04-1588.Google Scholar
  7. Bouma, T.J., M.B. De Vries, and P.M.J. Herman. 2010. Comparing ecosystem engineering efficiency of two plant species with contrasting growth strategies. Ecology 91 (9): 2696–2704.  https://doi.org/10.1890/09-0690.1.Google Scholar
  8. Bouma, T.J., J. van Belzen, T. Balke, Z. Zhu, L. Airoldi, A.J. Blight, A.J. Davies, C. Galvan, S.J. Hawkins, S.P.G. Hoggart, J.L. Lara, I.J. Losada, M. Maza, B. Ondiviela, M.W. Skov, E.M. Strain, R.C. Thompson, S. Yang, B. Zanuttigh, L. Zhang, and P.M.J. Herman. 2014. Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: Opportunities & steps to take. Coastal Engineering 87: 147–157.  https://doi.org/10.1016/j.coastaleng.2013.11.014.Google Scholar
  9. Bouma, T.J., J. van Belzen, T. Balke, J. van Dalen, P. Klaassen, A.M. Hartog, D.P. Callaghan, Z. Hu, M.J.F. Stive, S. Temmerman, and P.M.J. Herman. 2016. Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics. Limnology and Oceanography 61 (6): 2261–2275.  https://doi.org/10.1002/lno.10374.Google Scholar
  10. Bradley, K., and C. Houser. 2009. Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments. Journal of Geophysical Research 114 (F1): F01004.  https://doi.org/10.1029/2007JF000951.Google Scholar
  11. Bridges, T.S., P.W. Wagner, K.A. Burks-Copes, M.E. Bates, Z. Collier, C.J. Fischenich, J.Z. Gailani, L.D. Leuck, C.D. Piercy, J.D. Rosati, E.J. Russo, D.J. Shafer, B.C. Suedel, E.A. Vuxton, and T. V Wamsley. 2015. Use of natural and nature-based features (NNBF) for coastal resilience. ERDC SR-15-1.Google Scholar
  12. Britton, J.C., and B. Morton. 1989. Shore ecology of the Gulf of Mexico. University of Texas Press.Google Scholar
  13. Browne, M.A., and M.G. Chapman. 2011. Ecologically informed engineering reduces loss of intertidal biodiversity on artificial shorelines. Environmental Science & Technology. 45 (19): 8204–8207.  https://doi.org/10.1021/es201924b.Google Scholar
  14. Bulleri, F., M. Abbiati, and L. Airoldi. 2006. The colonisation of human-made structures by the invasive alga Codium fragile ssp. tomentosoides in the North Adriatic Sea (NE Mediterranean). Hydrobiologia 555 (1): 263–269.  https://doi.org/10.1007/s10750-005-1122-4.Google Scholar
  15. Callaghan, D.P., T.J. Bouma, P. Klaassen, D. van der Wal, M.J.F. Stive, and P.M.J. Herman. 2010. Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of waves and tidal flows. Estuarine, Coastal and Shelf Science 89 (1): 73–88.  https://doi.org/10.1016/j.ecss.2010.05.013.Google Scholar
  16. Cao, H., Z. Zhu, T. Balke, L. Zhang, and T.J. Bouma. 2018. Effects of sediment disturbance regimes on Spartina seedling establishment: Implications for salt marsh creation and restoration. Limnology and Oceanography 63 (2): 647–659.  https://doi.org/10.1002/lno.10657.Google Scholar
  17. Capobianco, M., and M.J.F. Stive. 2000. Soft intervention technology as a tool for integrated coastal zone management. Journal of Coastal Conservation 6 (1): 33–40.  https://doi.org/10.1007/BF02730465.Google Scholar
  18. Chapman, M.G., and D.J. Blockley. 2009. Engineering novel habitats on urban infrastructure to increase intertidal biodiversity. Oecologia 161 (3): 625–635.  https://doi.org/10.1007/s00442-009-1393-y.Google Scholar
  19. Chapman, M.G., and A.J. Underwood. 2011. Evaluation of ecological engineering of “armoured” shorelines to improve their value as habitat. Journal of Experimental Marine Biology and Ecology 400 (1-2): 302–313.  https://doi.org/10.1016/j.jembe.2011.02.025.Google Scholar
  20. Cheong, S., B. Silliman, P.P. Wong, B. van Wesenbeeck, C. Kim, and G. Guannel. 2013. Coastal adaptation with ecological engineering. Nature Climate Change 3 (9): 787–791.  https://doi.org/10.1038/nclimate1854.Google Scholar
  21. Christianen, M.J.A., J. van Belzen, P.M.J. Herman, M.M. van Katwijk, L.P.M. Lamers, P.J.M. van Leent, and T.J. Bouma. 2013. Low-canopy seagrass beds still provide important coastal protection services. PLoS One 8 (5): e62413.  https://doi.org/10.1371/journal.pone.0062413.Google Scholar
  22. CIRIA. 2007. The rock manual: The use of rock in hydraulic engineering. London: CIRIA.Google Scholar
  23. CIRIA. 2013. The international levee handbook. London: CIRIA (CIRIA, C731).Google Scholar
  24. Coastal Engineering Research Centre (CERC). 1984. Shore Protection Manual (SPM). 4th ed. Washington, DC: U. S. Army Engineer Waterways Experiment Station, U. S. Government Printing Office.Google Scholar
  25. COM. 2002. Recommendation of the European Parliament and of the Council of 30 May 2002 concerning the implementation of Integrated Coastal Zone Management in Europe. (2002/413/EC) Official Journal of the European Communities L 148/24, 662002.Google Scholar
  26. Coombes, M.A., E.C. La Marca, L.A. Naylor, and R.C. Thompson. 2015. Getting into the groove: Opportunities to enhance the ecological value of hard coastal infrastructure using fine-scale surface textures. Ecological Engineering 77: 314–323.  https://doi.org/10.1016/j.ecoleng.2015.01.032.Google Scholar
  27. Costanza, R., R. D’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387 (6630): 253–260.  https://doi.org/10.1038/387253a0.Google Scholar
  28. David, G.C., N. Schulz, and T. Schlurmann. 2016. Ecosystem-based disaster risk reduction and adaptation in practice. Cham: Springer International Publishing.Google Scholar
  29. De Vriend, H.J., and M. Van Koningsveld. 2012. Building with nature: Thinking, acting and interacting differently. Dordrecht: EcoShape, Building with Nature.Google Scholar
  30. De Vriend, H., M. van Koningsveld, and S. Aarninkhof. 2014. ‘Building with nature’: The new Dutch approach to coastal and river works. Proceedings of the Institution of Civil Engineers - Civil Engineering 167 (1): 18–24.  https://doi.org/10.1680/cien.13.00003.Google Scholar
  31. De Vries, M., T.J. Bouma, M. van Katwijk, and B.W. Borsje. 2007. Biobouwers van de Kust. Technical report (Z4158). Delft: WL | Delft Hydraulics.Google Scholar
  32. Dean, R.G. 1987. Coastal armouring: Effects, principles and mitigation. In 20th international conference on coastal engineering 1986, Taipei, Taiwan. pp 1843–1857.Google Scholar
  33. DEFRA. 2006. Shoreline management plan guidance. Volume 1: Aims and requirements. London: Department for Environment, Food and Rural Affairs.Google Scholar
  34. Dijkema, K.S. 1987. Changes in salt-marsh area in the Netherlands Wadden Sea after 1600. In Vegetation between land and sea, ed. A.H.L. Huiskes, C.W.P.M. Blom, and J. Rozema, 42–49. Dordrecht: Dr W Junk Publishers.  https://doi.org/10.1007/978-94-009-4065-9_4.Google Scholar
  35. Douglass, S.L., and B.H. Pickel. 1999. The tide doesn’t go out anymore: The effect of bulkheads on urban bay shorelines. Shore & Beach 67 (2&3): 19–25.Google Scholar
  36. Dugan, J.E., D.M. Hubbard, I.F. Rodil, D.L. Revell, and S. Schroeter. 2008. Ecological effects of coastal armoring on sandy beaches. Marine Ecology 29 (s1): 160–170.  https://doi.org/10.1111/j.1439-0485.2008.00231.x.Google Scholar
  37. Dugan, J.E., L. Airoldi, M.G. Chapman, S.J. Walker, and T. Schlacher. 2011. Estuarine and coastal structures: Environmental effects, a focus on shore and nearshore structures. In Treatise on Estuarine and Coastal Science. Elsevier, pp 17–41.Google Scholar
  38. EAK. 2002. Empfehlungen für Küstenschutzwerke. Korrigierte Ausgabe 2007. In Kuratorium für Forschung im Küsteningenieurwesen (KFKI), ed. Die Küste, vol. 65. Karlsruhe: Bundesanstalt für Wasserbau (BAW).Google Scholar
  39. Erftemeijer, P.L.A., and R.R. Lewis III. 2006. Environmental impacts of dredging on seagrasses: A review. Marine Pollution Bulletin 52 (12): 1553–1572.  https://doi.org/10.1016/j.marpolbul.2006.09.006.Google Scholar
  40. Erftemeijer, P.L.A., B. Riegl, B.W. Hoeksema, and P.A. Todd. 2012. Environmental impacts of dredging and other sediment disturbances on corals: A review. Marine Pollution Bulletin 64 (9): 1737–1765.  https://doi.org/10.1016/j.marpolbul.2012.05.008.Google Scholar
  41. European Commission. 2015. Towards an EU Research and Innovation policy agenda for nature-based solutions & re-naturing cities. Final report of the Horizon 2020.Google Scholar
  42. EurOtop. 2018. Manual on wave overtopping of sea defences and related structures. An overtopping manual largely based on European research, but for worldwide application. In ed. J. W. van der Meer, N. W. H. Allsop, T. Bruce, J. de Rouck, A. Kortenhaus, T. Pullen, H. Schüttrumpf, P. Troch and B. Zannutigh. Available online at www.overtopping-manual.com.
  43. Evans, A.J., L.B. Firth, S.J. Hawkins, E.S. Morris, H. Goudge, and P.J. Moore. 2016. Drill-cored rock pools: An effective method of ecological enhancement on artificial structures. Marine and Freshwater Research 67 (1): 123–130.  https://doi.org/10.1071/MF14244.Google Scholar
  44. Evans, A.J., B. Garrod, L.B. Firth, S.J. Hawkins, E.S. Morris-Webb, H. Goudge, and P.J. Moore. 2017. Stakeholder priorities for multi-functional coastal defence developments and steps to effective implementation. Marine Policy 75: 143–155.  https://doi.org/10.1016/j.marpol.2016.10.006.Google Scholar
  45. Feagin, R.A., N. Mukherjee, K. Shanker, A.H. Baird, J. Cinner, A.M. Kerr, N. Koedam, A. Sridhar, R. Arthur, L.P. Jayatissa, D. Lo Seen, M. Menon, S. Rodriguez, M. Shamsuddoha, and F. Dahdouh-Guebas. 2010. Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters. Conservation Letters 3 (1): 1–11.  https://doi.org/10.1111/j.1755-263X.2009.00087.x.Google Scholar
  46. Ferrario, F., M.W. Beck, C.D. Storlazzi, F. Micheli, C.C. Shepard, and L. Airoldi. 2014. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nature Communications 5 (1): 3794.  https://doi.org/10.1038/ncomms4794.Google Scholar
  47. Firth, L.B., R.C. Thompson, and S.J. Hawkins. 2012. Eco-engineering of artificial coastal structures to enhance biodiversity: An illustrated guide.Google Scholar
  48. Firth, L.B., N. Mieszkowska, R.C. Thompson, and S.J. Hawkins. 2013. Climate change and adaptational impacts in coastal systems: The case of sea defences. Environmental Science: Processes & Impacts 15 (9): 1665.  https://doi.org/10.1039/c3em00313b.Google Scholar
  49. Firth, L.B., R.C. Thompson, K. Bohn, M. Abbiati, L. Airoldi, T.J. Bouma, F. Bozzeda, V.U. Ceccherelli, M.A. Colangelo, A. Evans, F. Ferrario, M.E. Hanley, H. Hinz, S.P.G. Hoggart, J.E. Jackson, P. Moore, E.H. Morgan, S. Perkol-Finkel, M.W. Skov, E.M. Strain, J. van Belzen, and S.J. Hawkins. 2014. Between a rock and a hard place: Environmental and engineering considerations when designing coastal defence structures. Coastal Engineering 87: 122–135.  https://doi.org/10.1016/j.coastaleng.2013.10.015.Google Scholar
  50. Firth, L.B., A.M. Knights, D. Bridger, A.J. Evans, N. Mieszkowska, P.J. Moore, N.E. O’Connor, E.V. Sheehan, R.C. Thompson, and S.J. Hawkins. 2016a. Ocean sprawl: Challenges and opportunities for biodiversity Management in a Changing World Introduction: Context and background. An Annual Review 54: 193–269.Google Scholar
  51. Firth, L.B., K.A. Browne, A.M. Knights, S.J. Hawkins, and R. Nash. 2016b. Eco-engineered rock pools: A concrete solution to biodiversity loss and urban sprawl in the marine environment. Environmental Research Letters 11 (9): 094015.  https://doi.org/10.1088/1748-9326/11/9/094015.Google Scholar
  52. Fonseca, M.S., and J.A. Cahalan. 1992. A preliminary evaluation of wave attenuation by four species of seagrass. Estuarine, Coastal and Shelf Science 35 (6): 565–576.  https://doi.org/10.1016/S0272-7714(05)80039-3.Google Scholar
  53. Gambi, M., A. Nowell, and P. Jumars. 1990. Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Marine Ecology Progress Series 61: 159–169.  https://doi.org/10.3354/meps061159.Google Scholar
  54. Gillis, L., T. Bouma, C. Jones, M. van Katwijk, I. Nagelkerken, C. Jeuken, P. Herman, and A. Ziegler. 2014. Potential for landscape-scale positive interactions among tropical marine ecosystems. Marine Ecology Progress Series 503: 289–303.  https://doi.org/10.3354/meps10716.Google Scholar
  55. Glasby, T.M., S.D. Connell, M.G. Holloway, and C.L. Hewitt. 2007. Nonindigenous biota on artificial structures: Could habitat creation facilitate biological invasions? Marine Biology 151 (3): 887–895.  https://doi.org/10.1007/s00227-006-0552-5.Google Scholar
  56. Griggs, G. 2010.The effects of armoring shorelines—The California experience. In Puget Sound shorelines and the impacts of armoring - Proceedings of a State of the Science Workshop, May 2009. pp 77–84.Google Scholar
  57. Hall, A.E., R.J.H. Herbert, J.R. Britton, and S.L. Hull. 2018. Ecological enhancement techniques to improve habitat heterogeneity on coastal defence structures. Estuarine, Coastal and Shelf Science 210: 68–78.  https://doi.org/10.1016/j.ecss.2018.05.025.Google Scholar
  58. Hamm, L., M. Capobianco, H. Dette, A. Lechuga, R. Spanhoff, and M.J. Stive. 2002. A summary of European experience with shore nourishment. Coastal Engineering 47 (2): 237–264.  https://doi.org/10.1016/S0378-3839(02)00127-8.Google Scholar
  59. Henderson, J., and J. O’Neil. 2003. Economic Values Associated with Construction of Oyster Reefs by the Corps of Engineers. ERDC TN-EMRRP-ER-01:Google Scholar
  60. Hsu, J.R.C., and R. Silvester. 1990. Accretion behind single offshore breakwater. Journal of Waterway, Port, Coastal, and Ocean Engineering 116 (3): 362–380.  https://doi.org/10.1061/(ASCE)0733-950X(1990)116:3(362).Google Scholar
  61. ICES. 2016. Effects of extraction of marine sediments on the marine environment 2005–2011. ICES Cooperative Research Report No. 330. 260 pp.Google Scholar
  62. IUCN. 2016. Nature-based solutions to address global societal challenges. In eds. Cohen-Shacham, E Walters, G Janzen, C Maginnis, S.  https://doi.org/10.2305/IUCN.CH.2016.13.en.
  63. Jackson, N.L., and K.F. Nordstrom. 2011. Aeolian sediment transport and landforms in managed coastal systems: A review. Aeolian Research 3 (2): 181–196.  https://doi.org/10.1016/j.aeolia.2011.03.011.Google Scholar
  64. Keith, S.A., R.J.H. Herbert, P.A. Norton, S.J. Hawkins, and A.C. Newton. 2011. Individualistic species limitations of climate-induced range expansions generated by meso-scale dispersal barriers. Diversity and Distributions 17 (2): 275–286.  https://doi.org/10.1111/j.1472-4642.2010.00734.x.Google Scholar
  65. Knutson, P.L., R.A. Brochu, W.N. Seelig, and M. Inskeep. 1982. Wave damping in Spartina alterniflora marshes. Wetlands 2 (1): 87–104.  https://doi.org/10.1007/BF03160548.Google Scholar
  66. Koch, E.W., E.B. Barbier, B.R. Silliman, D.J. Reed, G.M. Perillo, S.D. Hacker, E.F. Granek, J.H. Primavera, N. Muthiga, S. Polasky, B.S. Halpern, C.J. Kennedy, C.V. Kappel, and E. Wolanski. 2009. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Frontiers in Ecology and the Environment 7 (1): 29–37.  https://doi.org/10.1890/080126.Google Scholar
  67. Kraus, N.C. 1988. The effects of seawalls on the beach: An extended literature review. Journal of Coastal Research. 1–28.  https://doi.org/10.2307/25735349.
  68. Kraus, N.C., and W.G. McDougal. 1996. The effects of seawalls on the beach: Part I, An Updated Literature Review. Journal of Coastal Research 12: 691–701.Google Scholar
  69. Lillycrop, W.J., and S.A. Hughes. 1993. Scour hole problems experienced by the Corps of Engineers; Data Presentation and Summary. CERC-93-2.Google Scholar
  70. Losada, M.A. 1990. Recent development in the design of mound breakwaters. In Chapter 21, ed. Herbich, J. Handbook of Coastal and Ocean Engineering, Vol. 1. Gulf Publishing.Google Scholar
  71. Lucrezi, S., T.A. Schlacher, and W. Robinson. 2010. Can storms and shore armouring exert additive effectson sandy-beach habitats and biota? Marine and Freshwater Research 61 (9): 951.  https://doi.org/10.1071/MF09259.Google Scholar
  72. Martins, G.M., R.C. Thompson, A.I. Neto, S.J. Hawkins, and S.R. Jenkins. 2010. Enhancing stocks of the exploited limpet Patella candei d’Orbigny via modifications in coastal engineering. Biological Conservation 143 (1): 203–211.  https://doi.org/10.1016/j.biocon.2009.10.004.Google Scholar
  73. McIvor, A.L., I. Möller, T. Spencer, and M. Spalding. 2012. Reduction of wind and swell waves by mangroves. Natural coastal protection series: Report 1 Cambridge Coastal Research Unit Working Paper 40 Published by The Nature Conservancy and Wetlands International, 27 pages, ISSN 2050-7941.Google Scholar
  74. Meyer, M., and A. Emersleben. 2009. Einsatz von Geozellen im Deich- und Wasserbau. In 3. Symposium “Sicherung von Dämmen, Deichen und Stauanlagen”, 431–443. Institut für Geotechnik der Universität Siegen.Google Scholar
  75. Meyer, D.L., E.C. Townsend, and G.W. Thayer. 1997. Stabilization and Erosion control value of oyster cultch for intertidal marsh. Restoration Ecology 5 (1): 93–99.  https://doi.org/10.1046/j.1526-100X.1997.09710.x.Google Scholar
  76. Millennium Ecosystem Assessment (MEA). 2005. Ecosystems and human well-being: Synthesis. Washington: Island Press.Google Scholar
  77. Mohamed, T.A., N.A. Alias, A.H. Ghazali, and M.S. Jaafar. 2006. Evaluation of environmental and hydraulic performance of bio-composite revetment blocks. American Journal of Environmental Sciences 2 (4): 129–134.  https://doi.org/10.3844/ajessp.2006.129.134.Google Scholar
  78. Möller, I., M. Kudella, F. Rupprecht, T. Spencer, M. Paul, B.K. van Wesenbeeck, G. Wolters, K. Jensen, T.J. Bouma, M. Miranda-Lange, and S. Schimmels. 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience 7 (10): 727–731.  https://doi.org/10.1038/ngeo2251.Google Scholar
  79. Morris, R.L., T.M. Konlechner, M. Ghisalberti, and S.E. Swearer. 2018. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence. Global Change Biology 24 (5): 1827–1842.  https://doi.org/10.1111/gcb.14063.Google Scholar
  80. Mory, M., and L. Hamm. 1997. Wave height, setup and currents around a detached breakwater submitted to regular or random wave forcing. Coastal Engineering 31 (1-4): 77–96.  https://doi.org/10.1016/S0378-3839(96)00053-1.Google Scholar
  81. Moschella, P.S., M. Abbiati, P. Åberg, L. Airoldi, J.M. Anderson, F. Bacchiocchi, F. Bulleri, G.E. Dinesen, M. Frost, E. Gacia, L. Granhag, P.R. Jonsson, M.P. Satta, A. Sundelöf, R.C. Thompson, and S.J. Hawkins. 2005. Low-crested coastal defence structures as artificial habitats for marine life: Using ecological criteria in design. Coastal Engineering 52 (10-11): 1053–1071.  https://doi.org/10.1016/j.coastaleng.2005.09.014.Google Scholar
  82. Murray, J.M., A. Meadows, and P.S. Meadows. 2002. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: A review. Geomorphology 47 (1): 15–30.  https://doi.org/10.1016/S0169-555X(02)00138-1.Google Scholar
  83. Narayan, S., M.W. Beck, B.G. Reguero, I.J. Losada, B. van Wesenbeeck, N. Pontee, J.N. Sanchirico, J.C. Ingram, G.-M. Lange, and K.A. Burks-Copes. 2016. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS One 11 (5): e0154735.  https://doi.org/10.1371/journal.pone.0154735.Google Scholar
  84. Naylor, L.A., O. Venn, M. Coombes, J. Jackson, and R.C. Thompson. 2011. Including ecological enhancements in the planning, design and construction of hard coastal structures: A process guide. Report to the Environment Agency (PID 110461). 66 pp.Google Scholar
  85. Naylor, L.A., M.A. Coombes, O. Venn, S.D. Roast, and R.C. Thompson. 2012. Facilitating ecological enhancement of coastal infrastructure: The role of policy, people and planning. Environmental Science & Policy 22: 36–46.  https://doi.org/10.1016/j.envsci.2012.05.002.Google Scholar
  86. Naylor, L.A., M. MacArthur, S. Hampshire, K. Bostock, M.A. Coombes, J.D. Hansom, R. Byrne, and T. Folland. 2017. Rock armour for birds and their prey: Ecological enhancement of coastal engineering. Proceedings of the Institution of Civil Engineers - Maritime Engineering 170 (2): 67–82.  https://doi.org/10.1680/jmaen.2016.28.Google Scholar
  87. Nesshöver, C., T. Assmuth, K.N. Irvine, G.M. Rusch, K.A. Waylen, B. Delbaere, D. Haase, L. Jones-Walters, H. Keune, E. Kovacs, K. Krauze, M. Külvik, F. Rey, J. van Dijk, O.I. Vistad, M.E. Wilkinson, and H. Wittmer. 2017. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Science of The Total Environment 579: 1215–1227.  https://doi.org/10.1016/j.scitotenv.2016.11.106.Google Scholar
  88. Neumann, B., A.T. Vafeidis, J. Zimmermann, and R.J. Nicholls. 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment. PLoS One 10 (3): e0118571.  https://doi.org/10.1371/journal.pone.0118571.Google Scholar
  89. Nienhuis, P.H., and R.D. Gulati. 2002. Ecological restoration of aquatic and semi-aquatic ecosystems in the Netherlands: An introduction. Springer, Netherlands.Google Scholar
  90. Nordstrom, K.F. 2014. Living with shore protection structures: A review. Estuarine, Coastal and Shelf Science 150: 11–23.  https://doi.org/10.1016/j.ecss.2013.11.003.Google Scholar
  91. Pan, Y., L. Li, F. Amini, and C. Kuang. 2015. Overtopping erosion and failure mechanism of earthen levee strengthened by vegetated HPTRM system. Ocean Engineering 96: 139–148.  https://doi.org/10.1016/j.oceaneng.2014.12.012.Google Scholar
  92. PIANC. 2011. Working with Nature- PIANC Position Paper. https://www.pianc.org/workingwithnature.php. Accessed 4 May 2018.
  93. Pilarczyk, K.W. 2003. Design of low-crested (submerged) structures – An overview –. In 6th international conference on coastal and port engineering in developing countries, Colombo, Sri Lanka.Google Scholar
  94. Pilarczyk, K. 2017. Dikes and revetments: Design. Maintenance and Safety Assessment, Routledge ISBN: 978-90-5410-455-1.Google Scholar
  95. Pilarczyk, K.W., and R.B. Zeidler. 1996. Offshore breakwaters and shore evolution control. Rotterdam: Balkema ISBN: 90-5410-627-1.Google Scholar
  96. Pontee, N., S. Narayan, M.W. Beck, and A.H. Hosking. 2016. Nature-based solutions: Lessons from around the world. Proceedings of the Institution of Civil Engineers - Maritime Engineering 169 (1): 29–36.  https://doi.org/10.1680/jmaen.15.00027.Google Scholar
  97. Ranasinghe, R., and I.L. Turner. 2006. Shoreline response to submerged structures: A review. Coastal Engineering 53 (1): 65–79.  https://doi.org/10.1016/j.coastaleng.2005.08.003.Google Scholar
  98. ROM. 2009. Recomendaciones para obras maritimas, Serie I. Obras de abrigo frente a las oscilaciones de mar. Puertos del Estado, Ministerio de Fomento, Gobierno de España.Google Scholar
  99. SAGE. 2015. Natural and structural measures for shoreline stabilization. http://sagecoast.org/docs/SAGE_LivingShorelineBrochure_Print.pdf. Accessed 21 May 2018.
  100. Salgado, K., and M.L. Martinez. 2017. Is ecosystem-based coastal defense a realistic alternative? Exploring the evidence. Journal of Coastal Conservation 21 (6): 837–848.  https://doi.org/10.1007/s11852-017-0545-1.Google Scholar
  101. Scheres, B., and H. Schüttrumpf. 2017. Conception of ecologically valuable sea dike systems. In In Mediterranean Coastal Foundation. The thirteenth international MEDCOAST congress on coastal and marine sciences, engineering, management and conservation. MEDCOAST 17, 893–904. Mellieha, Malta.Google Scholar
  102. Schmitt, K., T. Albers, T.T. Pham, and S.C. Dinh. 2013. Site-specific and integrated adaptation to climate change in the coastal mangrove zone of Soc Trang Province, Viet Nam. Journal of Coastal Conservation 17 (3): 545–558.  https://doi.org/10.1007/s11852-013-0253-4.Google Scholar
  103. Schüttrumpf, H. 2008. Sea Dikes in Germany. In Kuratorium für Forschung im Küsteningenieurwesen (KFKI). In ed. Die Küste, 189–199. 74 Heide i Holstein: Boyens Medien GmbH & Co KG.Google Scholar
  104. Scott, T., M. Austin, G. Masselink, and P. Russell. 2016. Dynamics of rip currents associated with groynes — Field measurements, modelling and implications for beach safety. Coastal Engineering 107: 53–69.  https://doi.org/10.1016/j.coastaleng.2015.09.013.Google Scholar
  105. Scyphers, S.B., S.P. Powers, K.L. Heck, and D. Byron. 2011. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries. PLoS One 6 (8): e22396.  https://doi.org/10.1371/journal.pone.0022396.Google Scholar
  106. Sherrard, T.R.W., S.J. Hawkins, P. Barfield, M. Kitou, S. Bray, and P.E. Osborne. 2016. Hidden biodiversity in cryptic habitats provided by porous coastal defence structures. Coastal Engineering 118: 12–20.  https://doi.org/10.1016/j.coastaleng.2016.08.005.Google Scholar
  107. Shi, Z.H., N.F. Fang, F.Z. Wu, L. Wang, B.J. Yue, and G.L. Wu. 2012. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. Journal of Hydrology 454–455: 123–130.  https://doi.org/10.1016/j.jhydrol.2012.06.004.Google Scholar
  108. Silva, R., D. Lithgow, L.S. Esteves, M.L. Martínez, P. Moreno-Casasola, R. Martell, P. Pereira, E. Mendoza, A. Campos-Cascaredo, P. Winckler Grez, A.F. Osorio, J.D. Osorio-Cano, and G.D. Rivillas. 2017. Coastal risk mitigation by green infrastructure in Latin America. Proceedings of the Institution of Civil Engineers - Maritime Engineering 170 (2): 39–54.  https://doi.org/10.1680/jmaen.2016.13.Google Scholar
  109. Strain, E.M.A., C. Olabarria, M. Mayer-Pinto, V. Cumbo, R.L. Morris, A.B. Bugnot, K.A. Dafforn, E. Heery, L.B. Firth, P.R. Brooks, and M.J. Bishop. 2018. Eco-engineering urban infrastructure for marine and coastal biodiversity: Which interventions have the greatest ecological benefit? Journal of Applied Ecology 55 (1): 426–441.  https://doi.org/10.1111/1365-2664.12961.Google Scholar
  110. Suh, K., and R.A. Dalrymple. 1987. Offshore breakwaters in laboratory and field. Journal of Waterway, Port, Coastal, and Ocean Engineering 113 (2): 105–121.  https://doi.org/10.1061/(ASCE)0733-950X(1987)113:2(105).Google Scholar
  111. Sutton-Grier, A.E., K. Wowk, and H. Bamford. 2015. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environmental Science & Policy 51: 137–148.  https://doi.org/10.1016/j.envsci.2015.04.006.Google Scholar
  112. Suzuki, T., M. Zijlema, B. Burger, M.C. Meijer, and S. Narayan. 2012. Wave dissipation by vegetation with layer schematization in SWAN. Coastal Engineering 59 (1): 64–71.  https://doi.org/10.1016/j.coastaleng.2011.07.006.Google Scholar
  113. Temmerman, S., P. Meire, T.J. Bouma, P.M.J. Herman, T. Ysebaert, and H.J. De Vriend. 2013. Ecosystem-based coastal defence in the face of global change. Nature 504 (7478): 79–83.  https://doi.org/10.1038/nature12859.Google Scholar
  114. Trentmann, J. 2011. Dichtung aus Wasserbausteinen mit Vollverguss aus hydraulisch gebundenem Vergusstoff. In DWA (Ed.): KW Korrespondenz Wasserwirtschaft. 4:452–458.Google Scholar
  115. U.S. Army Corps of Engineers (USACE). 2002. Coastal engineering manual, 1110th-2nd–110th edn. Washington, D.C.: U.S. Army Corps of Engineers.Google Scholar
  116. U.S. Army Corps of Engineers (USACE). 2012. Engineering with nature fact sheet. https://ewn.el.erdc.dren.mil/pub/EWNFactSheet_Final.pdf. Accessed 12 April 2018.
  117. Van der Nat, A., P. Vellinga, R. Leemans, and E. van Slobbe. 2016. Ranking coastal flood protection designs from engineered to nature-based. Ecological Engineering 87: 80–90.  https://doi.org/10.1016/j.ecoleng.2015.11.007.Google Scholar
  118. Van Katwijk, M.M., and N. Dankers. 2001. Ecological coastal protection; mussel beds, seagrass beds and salt-marshes. Poster at Symposium “Food for thought: structuring factors of shallow marine coastal communities”, 29–30. Texel: NIOZ.  https://doi.org/10.13140/RG.2.2.30768.97286.Google Scholar
  119. Van Loon-Steensma, J.M., H.A. Schelfhout, and P. Vellinga. 2014. Green adaptation by innovative dike concepts along the Dutch Wadden Sea coast. Environmental Science & Policy 44: 108–125.  https://doi.org/10.1016/j.envsci.2014.06.009.Google Scholar
  120. Van Rijn, L. C. 2013. Design of hard coastal structures against erosion. Accessed online 22/10/2018. https://www.leovanrijn-sediment.com/papers/Coastalstructures2013.pdf. Accessed 22 Oct 2018.
  121. Wiecek, D. 2009. Environmentally friendly seawalls: A guide to improving the environmental value of seawalls and seawall-lined foreshores in estuaries.Google Scholar
  122. Wilke, M., B. Krueger, M. Schuell, and P. Tschernutter. 2012. Erosion resistant construction of overflow sections by means of geosynthetic concrete mattresses. In Proceedings 6th International Conference on Scour and Erosion (ICSE-6). Paris, France, 27.-31.08.2012: Société Hydrotechnique De France, eds. J.-J. Fry, C. Chevalier, 1231–1238.Google Scholar
  123. Winterwerp, J.C., P.L.A. Erftemeijer, N. Suryadiputra, P. van Eijk, and L. Zhang. 2013. Defining eco-Morphodynamic requirements for rehabilitating eroding mangrove-mud coasts. Wetlands. 33 (3): 515–526.  https://doi.org/10.1007/s13157-013-0409-x.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2019

Authors and Affiliations

  • T. Schoonees
    • 1
    Email author
  • A. Gijón Mancheño
    • 2
  • B. Scheres
    • 3
  • T. J. Bouma
    • 4
    • 5
  • R. Silva
    • 6
  • T. Schlurmann
    • 1
  • H. Schüttrumpf
    • 3
  1. 1.Ludwig Franzius Institute of Hydraulic, Estuarine and Coastal EngineeringLeibniz University HannoverHannoverGermany
  2. 2.Department of Hydraulic Engineering, Faculty of Civil Engineering and GeosciencesDelft University of TechnologyDelftThe Netherlands
  3. 3.Institute for Hydraulic Engineering and Water Resources ManagementRWTH Aachen UniversityAachenGermany
  4. 4.Department of Estuarine and Delta SystemsRoyal Netherlands Institute for Sea Research (NIOZ)YersekeThe Netherlands
  5. 5.Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
  6. 6.Instituto de IngenieríaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations