Advertisement

Hydrographic and Biological Impacts of a Glacial Lake Outburst Flood (GLOF) in a Patagonian Fjord

  • Erika Meerhoff
  • Leonardo R. Castro
  • Fabián J. Tapia
  • Iván Pérez-Santos
Article
  • 102 Downloads

Abstract

Glacial lake outburst floods (GLOFs) in Northern Patagonian Ice Field affecting the Baker River basin have increased their frequency in recent years. To evaluate the impact of a GLOF in the hydrography and biological components of the plankton in the Baker Fjord, we assessed the relative contributions of terrigenous versus marine plankton carbon sources to the particulate organic matter (POM) in the fjord before and after a GLOF in the austral summer 2014. We also evaluated whether terrestrial carbon brought into the fjord by the river may reach higher trophic levels via a deposit-feeding organism the juvenile pelagic Munida gregaria. Over a 10-day period, hydrographic profiles, water samples for POM, and zooplankton samples were collected daily from three stations and two depths along the fjord’s inner section. Samples of suspended POM and tissue from M. gregaria were analyzed for stable-isotope composition of carbon (δ13C). The GLOF arrival produced a thermal front in the fjord, followed by an oscillation of the pycnocline; an abrupt increase in the total organic carbon content of POM, which was attributed to terrestrial input; and a concurrent peak in the abundance of M. gregaria, suggesting an aggregation response to the GLOF. Understanding GLOF effects on local hydrography, productivity, and food web structure provides valuable insight on the potential responses of fjord ecosystems in general to climate change-induced variability. Given present climatic trends in high-latitude zones, more frequent GLOFs might be expected in Patagonian fjords and channels as well as in other high-latitude basins.

Keywords

GLOF Fjord Mixing Squat lobster Stable isotope Trophic level 

Notes

Acknowledgements

We thank Eduardo Escalona, Aldo Barba, and Rodrigo Mansilla for their support with the CTD, zooplankton sampling, and cruises conduction. Jorge Henriquez also collaborated with ADCP deployment.

Funding Information

Financial support for this study came from the COPAS Sur-Austral Program (CONICYT Grant PFB-31, University of Concepción). LC, IP-S, and FT were funded by the COPAS Sur-Austral BASAL Center AFB17006. LC was also funded by the IDEAL FONDAP Center No. 15150003. EM acknowledges the support from the Postdoctoral-FONDECYT/Chile 3150419. IP-S was also funded by the CONICYT FONDECYT Grant 11140161.

References

  1. Abreu, Paulo César, César B. Costa, Carlos Bemvenuti, Clarisse Odebrecht, Wilheml Graneli, and Alexandre M. Anesio. 2006. Eutrophication processes and trophic interactions in a shallow estuary: Preliminary results based on stable isotope analysis (δ13C and δ15N). Estuaries and Coasts 29 (2): 277–285.CrossRefGoogle Scholar
  2. Aiken, Christopher M. 2012. Seasonal thermal structure and exchange in Baker Channel, Chile. Dynamics of Atmospheres and Oceans 58: 1–19.CrossRefGoogle Scholar
  3. Aracena, Claudia, Carina B. Lange, José L. Iriarte, Lorena Rebolledo, and Silvio Pantoja. 2011. Latitudinal patterns of export production recorded in surface sediments of the Chilean Patagonian fjords (41–55°S) as a response to water column productivity. Continental Shelf Research 31 (3-4): 340–355.CrossRefGoogle Scholar
  4. Benstead, Jonathan P., James G. March, Brian Fry, Katherine C. Ewel, and Catherine M. Pringle. 2006. Testing isosource: Stable isotope analysis of a tropical fishery with diverse organic matter sources. Ecology 87 (2): 326–333.CrossRefGoogle Scholar
  5. Bianchi, Thomas S. 2007. Biogeochemistry of estuaries. New York: Oxford University Press 687 pp.Google Scholar
  6. Brierley, Andrew S., Ryan A. Saunders, Douglas G. Bone, Eugene J. Murphy, Peter Enderlein, Stehane Conti, and David A. Demer. 2006. Use of moored acoustic instruments to measure short-term variability in abundance of Antarctic krill. Limnology and Oceanography: Methods 4 (2): 18–29.Google Scholar
  7. Casassa, Gino, Jens Wendt, Anja Wendt, Paulina López, Thomas Schuler, Hans-Gerd Maas, Jorge Carrasco, and Andres Rivera. 2010. Outburst floods of glacial lakes in Patagonia: is there an increasing trend? Geophysical Research Abstracts. EGU General Assembly 2010, vol. 12 (EGU2010–12821).Google Scholar
  8. Cerling, Thure E., and Jay Quade. 1993. Stable carbon and oxygen isotopes in soil carbonates. In Climate change in continental isotopic records, ed. P. Swart, J.A. McKenzie, and K.C. Lohman , vol. 78, 217–231. AGU MonographysGoogle Scholar
  9. Clague, John J., and Stephen G. Evans. 2000. A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quaternary Science Reviews 19 (17-18): 1763–1783.CrossRefGoogle Scholar
  10. Cuypers, Yannis, Brigitte Vinçon-Leite, Alexis Groleau, Bruno Tassin, and Jean-François Humbert. 2011. Impact of internal waves on the spatial distribution of Planktothrix rubescens (cyanobacteria) in an alpine lake. Multidisciplinary Journal of Microbial Ecology 5: 580–589.Google Scholar
  11. Dussaillant, Alejandro, Gerardo Benito, Wouter Buytaert, Paul Carling, Claudio Meier, and Fabián Espinoza. 2010. Repeated glacial-lake outburst floods in Patagonia: An increasing hazard? Natural Hazards 54 (2): 469–481.CrossRefGoogle Scholar
  12. Evans, Mary Anne, Sally MacIntyre, and George W. Kling. 2008. Internal wave effects on photosynthesis: Experiments, theory, and modeling. Limnology and Oceanography 53 (1): 339–353.CrossRefGoogle Scholar
  13. Fantle, Matthew, Ana I. Dittel, Sandra M. Schwalm, Charles Epifanio, and Marilyn L. Fogel. 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120: 416–426.CrossRefGoogle Scholar
  14. Farmer, David M., and Howard J. Freeland. 1983. The physical oceanography of fjords. Progress in Oceanography 12 (2): 147–220.CrossRefGoogle Scholar
  15. Glasser, N.F., S. Harrison, K.N. Jansson, K. Anderson, and A. Cowley. 2011. Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum. Nature Geoscience 4 (5): 303–307.CrossRefGoogle Scholar
  16. Goebel, N.L., Stephen R. Wing, and Philip W. Boyd. 2005. A mechanism for onset of diatom blooms in a fjord with persistent salinity stratification. Estuarine, Coastal and Shelf Science 64 (2-3): 546–560.CrossRefGoogle Scholar
  17. Grinsted, Aslak, Christine S. Hvidberg, Néstor Campos, and Dorthe Dahl-Jensen. 2017. Periodic outburst floods from an ice-dammed lake in East Greenland. Scientific Reports 7: 1–6.CrossRefGoogle Scholar
  18. IPCC. 2007. Contribution of working groups I to the fourth assessment report of the intergovernmental panel on climate change. In Climate change 2007: The physical science basis, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, 996. Cambridge: Cambridge University Press.Google Scholar
  19. IPCC. 2013. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In Climate change 2013: the physical science basis, ed. T.F. Stocker, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, 1535. Cambridge: Cambridge University Press.Google Scholar
  20. Iriarte, José Luis, Humberto González, and Laura Nahuelhual. 2010. Patagonian fjord ecosystems in Southern Chile as a highly vulnerable region: Problems and needs. AMBIO 39 (7): 463–466.CrossRefGoogle Scholar
  21. Jacob, Barbara, Fabian Tapia, Giovani Daneri, José L. Iriarte, Paulina Montero, Marcus A. Sobarzo, and Renato A. Quiñones. 2014. Springtime size-fractionated primary production across hydrographic and PAR-light gradients in Chilean Patagonia (41–50°S). Progress in Oceanography 129: 75–84.CrossRefGoogle Scholar
  22. Jaeger, John M., and Charles A. Nittrouer. 1999. Marine record of surge-induced outburst floods from the Bering Glacier, Alaska. Geology 27 (9): 847–850.CrossRefGoogle Scholar
  23. Jenkins, Liza. 2010. Satellite-derived turbidity monitoring in the ice marginal lakes at Bering Glacier. Geological Society of America Special Papers 462: 351–360.CrossRefGoogle Scholar
  24. Kjeldsen, K.K., J. Mortensen, J. Bendtsen, D. Petersen, K. Lennert, and S. Rysgaard. 2014. Ice-dammed lake drainage cools and raises surface salinities in a tidewater outlet glacier fjord, West Greenland. Journal of Geophysical Research - Earth Surface 119 (6): 1310–1321.CrossRefGoogle Scholar
  25. Lamb, Kevin G. 1997. Particle transport by nonbreaking, solitary internal waves. Journal of Geophysical Research 102: 641–660.CrossRefGoogle Scholar
  26. Lee, Kyounghoon, Tohru Mukai, Donhyug Kang, and Kohji Iida. 2004. Application of acoustic Doppler current profiler combined with a scientific echo sounder for krill Euphausia pacifica density estimation. Fisheries Science 70 (6): 1051–1060.CrossRefGoogle Scholar
  27. Loriaux, Thomas, and Gino Casassa. 2013. Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context. Global and Planetary Change 102: 33–40.CrossRefGoogle Scholar
  28. Louchouarn, Patrick, Marc Lucotte, Ren Caunel, Jean-Pierre Gagne, and Louis-Filip Richard. 1997. Sources and early diagenesis of lignin and bulk organic matter in the sediments of the lower St. Lawrence estuary and the Saguenay Fjord. Marine Chemistry 58 (1-2): 3–26.CrossRefGoogle Scholar
  29. Marín, Víctor H., Antonio Tironi, María Alejandra Paredesa, and Manuel Contreras. 2013. Modeling suspended solids in a Northern Chilean Patagonia glacier-fed fjord: GLOF scenarios under climate change conditions. Ecological Modeling 264: 7–16.CrossRefGoogle Scholar
  30. McConnaughey, T., and Cp McRoy. 1979. Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Marine Biology 53 (3): 257–262.CrossRefGoogle Scholar
  31. McMahon, Kelton W., Beverly J. Johnson, and William G. Ambrose Jr. 2005. Diet and movement of the killifish, Fundulus heteroclitus, in a Maine salt marsh assessed using gut contents and stable isotope analyses. Estuaries 28 (6): 966–973.CrossRefGoogle Scholar
  32. Meerhoff, Erika, Leonardo Castro, and Fabián Tapia. 2013. Influence of freshwater discharges and tides on the abundance and distribution of larval and juvenile Munida gregaria in the Baker River estuary, Chilean Patagonia. Continental Shelf Research 61–62: 1–11.CrossRefGoogle Scholar
  33. Meerhoff, Erika, Fabian Tapia, Marcus A. Sobarzo, and Leonardo Castro. 2014. Influence of estuarine and secondary circulation on crustacean larval fluxes: A case study from a Patagonian fjord. Journal of Plankton Research 0: 1–15.Google Scholar
  34. Ministerio de Obras Públicas, Dirección General de Aguas (MOP-DGA). 1987. Balance Hídrico de Chile. Santiago: Litografía Marinetti S.A. 36 láminas (In Spanish), 24 pp.Google Scholar
  35. Moffat, Carlos, Fabian J. Tapia, Charles A. Nittrouer, Bernard Hallet, Francisca Bown, Katherine Boldt Love, and Claudio Iturra. 2018. Seasonal evolution of ocean heat supply and freshwater discharge from a rapidly retreating tidewater glacier: Jorge Montt, Patagonia. Journal of Geophysical Research, Oceans In press.Google Scholar
  36. Montecinos, Sandra, Leonardo Castro, and Sergio Neira. 2016. Stable isotope (δ13C and δ15N) and trophic position of Patagonian sprat (Sprattus fuegensis) from the Northern Chilean Patagonia. Fisheries Research 179: 139–147.CrossRefGoogle Scholar
  37. Montero, Paulina, Daneri Giovani, Tapia Fabián, Iriarte José Luis, and Crawford David. 2017. Diatom blooms and primary production in a channel ecosystem of Central Patagonia. Latin American Journal of Aquatic Research 45: 999–1016.CrossRefGoogle Scholar
  38. Munk, Walter, and Carl Wunsch. 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers 45 (12): 1977–2010.CrossRefGoogle Scholar
  39. Ng, Felix, Shiyin Liu, Bulat Mavlyudov, and Yanguo Wang. 2007. Climatic control on the peak discharge of glacier outburst floods. Geophysical Research Letters 34 (21).  https://doi.org/10.1029/2007GL031426.
  40. Overman, Nathanael C., and Donna L. Parrish. 2001. Stable isotope composition of walleye: δ15N accumulation with age and area-specific differences in δ13C. Canadian Journal of Fisheries and Aquatic Sciences 58 (6): 1253–1260.CrossRefGoogle Scholar
  41. Pannard, Alexandrine, Beatrix E. Beisner, David F. Bird, Jean Braun, Dolors Planas, and Myriam Bormans. 2011. Recurrent internal waves in a small lake: Potential ecological consequences for metalimnetic phytoplankton populations. Limnology and Oceanography: Fluids and Environments 1: 91–109.Google Scholar
  42. Parker, P.L. 1964. The biogeochemistry of the stable isotopes of carbon in a marine bay. Geochimica et Cosmochimica Acta 28 (7): 1155–1164.CrossRefGoogle Scholar
  43. Paterson, A.W., and A.K. Whitfield. 1997. A stable carbon isotope study of the food-web in a freshwater-deprived South African estuary, with particular emphasis on the ichthyofauna. Estuarine, Coastal and Shelf Science 45 (6): 705–715.CrossRefGoogle Scholar
  44. Pérez-Barros, Patricia, M. Carolina Romero, Javier A. Calcagno, and Gustavo A. Lovrich. 2010. Similar feeding habits of two morphs of Munida gregaria (Decapoda) evidence the lack of trophic polymorphism. Revista de Biología Marina y Oceanografía 45 (3): 461–470.CrossRefGoogle Scholar
  45. Peterson, Bruce J., and Brian Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18 (1): 293–320.CrossRefGoogle Scholar
  46. Post, David M. 2002. Using stable isotopes to estimate trophic position: Models, methods and assumptions. Ecology 83 (3): 703–718.CrossRefGoogle Scholar
  47. Quigg, Antonietta, Clifton C. Nunnally, Allison S. McInnes, Shelton Gay, Gilbert T. Rowe, Timothy M. Dellapenna, and Randall W. Davis. 2013. Hydrographic and biological controls in two subarctic fjords: An environmental case study of how climate change could impact phytoplankton communities. Marine Ecology Progress Series 480: 21–37.CrossRefGoogle Scholar
  48. Quiroga, Eduardo, Paula Ortiz, Rodrigo González-Saldías, Bryan Reid, Fabián J. Tapia, Iván Pérez-Santos, Lorena Rebolledo, Rodrigo Mansilla, Carlos Pineda, Ilia Cari, Nicole Salinas, Américo Montiel, and Dieter Gerdes. 2016. Seasonal benthic patterns in a glacial Patagonian fjord: The role of suspended sediment and terrestrial organic matter. Marine Ecology Progress Series 561: 31–50.CrossRefGoogle Scholar
  49. Resh, Vincent H., Arthur V. Brown, Alan P. Covich, Martin E. Gurtz, Hiram W. Li, G. Wayne Minshall, Seth R. Reice, Andrew L. Sheldon, James Bruce Wallace, and Robert C. Wissmar. 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7 (4): 433–455.CrossRefGoogle Scholar
  50. Rodriguez, Roberto, Alicia Marticorena, and Ernesto Teneb. 2008. Vascular plants of Baker and Pascua rivers, region of Aysén, Chile. Gayana Botánica 65: 39–70.Google Scholar
  51. Romero, M.C. 2003. Hábitos alimentarios y bioenergética de la langostilla Munida subrugosa (Crustacea: Decapoda) del Canal Beagle, Tierra del Fuego, Argentina. Tesis de Doctorado, Universidad Nacional de Córdoba, Argentina.Google Scholar
  52. Romero, M. Carolina, Gustavo A. Lovrich, Federico Tapella, and Sven Thatje. 2004. Feeding ecology of the crab Munida subrugosa (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. Journal of the Marine Biological Association of the United Kingdom 84 (2): 359–365.CrossRefGoogle Scholar
  53. Ross, Lauren, Iván Pérez-Santos, Arnoldo Valle-Levinson, and Wolfgang Schneider. 2014. Semidiurnal internal tide in a Patagonian fjords. Progress in Oceanography 129: 19–34.CrossRefGoogle Scholar
  54. Ross, Lauren, Arnoldo Valle-Levinson, and Iván Pérez-Santos. 2015. Baroclinic annular variability of internal motions in a Patagonian fjord. Journal of Geophysical Research, Oceans 584: 120.Google Scholar
  55. Rozzi, Ricardo, Juan Armesto, Julio R. Gutiérrez, Francisca Massardo, Gene E. Likens, Christopher B. Anderson, Alexandria Poole, Kelli P. Moses, Eugene Hargrove, Andres Mansilla, James H. Kennedy, Mary Willson, Kurt Jax, Clive G. Jones, J. Baird Callicott, and Mary T.K. Arroyo. 2012. Integrating ecology and environmental ethics: Earth stewardship in the southern end of the Americas. Bioscience 62 (3): 226–236.CrossRefGoogle Scholar
  56. Sackett, William M., and Robert R. Thomson. 1963. Isotopic organic carbon composition of recent continental derived clastic sediments of eastern Gulf Coast, Gulf of Mexico. Bulletin An Association Petroleum and Geology 47: 525–531.Google Scholar
  57. Sage, Rowan F., Pascal-Antoine Christin, and Erika J. Edwards. 2011. The C4 plant lineages of planet Earth. Journal of Experimental Botany 62 (9): 3155–3169.  https://doi.org/10.1093/jxb/err048.CrossRefGoogle Scholar
  58. Sanchez, Rafael, Carla Marchant, and Axel Borsdorf. 2012. The role of Chilean mountain areas in time of drought and energy crisis: New pressures and challenges for vulnerable ecosystems. Journal of Mountain Science 9: 451–462.CrossRefGoogle Scholar
  59. Sepúlveda, Julio, Silvio Pantoja, and Konrad A. Hughen. 2011. Sources and distribution of organic matter in Northern Patagonia fjords, Chile (44–47°S): A multi-tracer approach for carbon cycling assessment. Continental Shelf Research 31: 315–329.CrossRefGoogle Scholar
  60. Silva, Nelson, and Steve Neshyba. 1979. On the southernmost extension of the Perú-Chile undercurrent. Deep-Sea Research 26: 1387–1393.CrossRefGoogle Scholar
  61. Silva, Nelson, Cristian A. Vargas, and Ricardo Prego. 2011. Land–ocean distribution of allochthonous organic matter in surface sediments of the Chiloé and Aysén interior seas (Chilean Northern Patagonia). Continental Shelf Research 31 (3-4): 330–339.CrossRefGoogle Scholar
  62. Sommaruga, Rubén. 2015. When glaciers and ice sheets melt: Consequences for planktonic organisms. Journal of Plankton Research 37 (3): 509–518.CrossRefGoogle Scholar
  63. United Nations Development Programme. 2012. Glacial lake outburst flood (GLOF) reducing risks and ensuring preparedness. Report on the international conference 5-7, December, hotel Olathang, Paro, Bhutan 50pp (UNDP 2012).Google Scholar
  64. Valle-Levinson, Arnoldo. 2010. Definition and classification of estuaries. In Contemporary issues in estuarine physics, ed. A. Valle-Levinson. New York: Cambridge University Press 315 pp.CrossRefGoogle Scholar
  65. Vander Zanden, M. Jake, and Joseph B. Rasmussen. 1999. Primary consumer delta C-13 and delta N-15 and the trophic position of aquatic consumers. Ecology 80: 1395–1404.CrossRefGoogle Scholar
  66. Vander Zanden, M. Jake, and Joseph B. Rasmussen. 2001. Variation in delta N-15 and delta C-13 trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.CrossRefGoogle Scholar
  67. Vargas, Cristian A., Rodrigo A. Martínez, Valeska SanMartin, Mauricio Aguayo, Nelson Silva, and Rodrigo Torres. 2011. Allochthonous subsidies of organic matter across a lake–river–fjord landscape in the Chilean Patagonia: Implications for marine zooplankton in inner fjord areas. Continental Shelf Research 31 (3-4): 187–201.CrossRefGoogle Scholar
  68. Varisco, Martin, and Julio H. Vinuesa. 2007. La alimentación de Munida gregaria (Fabricius, 1793) (Crustacea: Anomura: Galatheidae) en fondos de pesca del Golfo San Jorge, Argentina. Revista de Biologia Marina y Oceangrafia 42: 221–229.Google Scholar
  69. Varisco, Martin, and Julio H. Vinuesa. 2010. Occurrence of pelagic juveniles of Munida gregaria (Fabricius, 1793) (Anomura, Galatheidae) in San Jorge Gulf, Argentina. Crustaceana 83 (9): 1147–1151.CrossRefGoogle Scholar
  70. Vince, Gaia. 2010. Dams for Patagonia. Science 329 (5990): 382–385.CrossRefGoogle Scholar
  71. Vinuesa, Julio, and Martin Varisco. 2007. Trophic ecology of the lobster krill Munida gregaria in San Jorge Gulf, Argentina. Investigaciones Marinas 35: 25–34.CrossRefGoogle Scholar
  72. Vlasenko, Vasily, Nataliya Stashchul, and Kolumbann Hutter. 2005. Baroclinic tides. Theoretical modeling and observational evidence. New York: Cambridge University Press.CrossRefGoogle Scholar
  73. Winkelmann, Daniel, and Jochen Knies. 2005. Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen. Geochemistry, Geophysics, Geosystems 6 (9): Q09012.  https://doi.org/10.1029/2005GC000916.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2018

Authors and Affiliations

  1. 1.Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  2. 2.Programa COPAS Sur-AustralUniversidad de ConcepciónConcepciónChile
  3. 3.Unidad de Ciencias del Mar (UNDECIMAR), Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  4. 4.Centro de Investigaciones de Altas Latitudes (IDEAL)Universidad Austral de ChileValdiviaChile
  5. 5.Universidad de los LagosPuerto MonttChile

Personalised recommendations