Advertisement

Estuaries and Coasts

, Volume 41, Issue 8, pp 2410–2425 | Cite as

Local Habitat and Seascape Structure Influence Seagrass Fish Assemblages in the Venice Lagoon: The Importance of Conservation at Multiple Spatial Scales

  • Luca Scapin
  • Matteo Zucchetta
  • Adriano Sfriso
  • Piero Franzoi
Article

Abstract

Seagrass meadows are a critical component of estuarine and coastal seascapes, and their structure influences fish assemblages at multiple spatial scales. The patch mosaic model, which defines the seascape as a collection of interacting habitat types, is increasingly adopted to prioritise protected areas and design ecological restoration schemes, hence helping to preserve seagrass meadows and the associated fish assemblages. Despite that, there are few studies investigating the relative contribution of environmental characteristics measured at different spatial scales in determining the distribution of seagrass fish. This study collects fish and environmental observations taken at both site and seascape scales in seagrass meadows in the Venice lagoon (Adriatic Sea, Italy). By means of generalised linear models, it aims to disentangle the relative influence of local water quality and habitat characteristics from that of habitat mosaic properties, investigating the response of whole fish assemblage descriptors, feeding guilds and dominant species. While confirming the primary importance of local habitat quality, the study highlights that also seagrass habitat structure at the seascape scale is relevant for seagrass fish assemblages, influencing total biomass, biomass of macrobenthivorous and hyperbenthivorous/piscivorous species and seagrass specialists such as syngnathids. Conservation of seagrass fish assemblages can therefore be promoted in Mediterranean coastal lagoons by preserving or restoring some features of the habitat mosaic, namely the extension of seagrass patches and their shape complexity, in addition to local water quality and seagrass cover.

Keywords

Transitional waters Patch mosaic Seagrass meadows Management Restoration 

Notes

Acknowledgements

This study was partially funded by the Italian Ministry of Education, Universities and Research (PRIN grant 2009W2395), by Corila (Consorzio Ricerche Lagunari) and by European Union’s LIFE+ financial instrument (grant LIFE12 NAT/IT/000331, which contributes to the environmental recovery of a Natura 2000 site, SIC IT3250031 - Northern Venice Lagoon).

Supplementary material

12237_2018_434_MOESM1_ESM.docx (6.6 mb)
ESM 1 (DOCX 6722 kb)

References

  1. Abdul Malak D., Livingstone S.R., Pollard D., Polidoro B.A., Cuttelod A., Bariche M., Bilecenoglu M., Carpenter K.E., Collette B.B., Francour P., Goren M., Hichem Kara M., Massutí E., Papaconstantinou C., and Tunesi L. 2011. Overview of the conservation status of the marine fishes of the Mediterranean Sea. Gland, Switzerland and Malaga, Spain: IUCN. vii + 61pp.Google Scholar
  2. Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto (ARPAV). 2012. Piano di monitoraggio dei corpi idrici della laguna di Venezia finalizzato alla definizione dello stato ecologico, ai sensi della direttiva 2000/60/CE. Relazione FinaleGoogle Scholar
  3. Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Kock, A.C. Stier, and B.R. Sillman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81 (2): 169–193.  https://doi.org/10.1890/10-1510.1.CrossRefGoogle Scholar
  4. Bell, J.D., and M. Westoby. 1986. Importance of local changes in leaf height and density to fish and decapods associated with seagrasses. Journal of Experimental Marine Biology and Ecology 104 (1-3): 249–274.CrossRefGoogle Scholar
  5. Bell, S.S., M.O. Hall, S. Soffian, and K. Madley. 2002. Assessing the impact of boat propeller scars on fish and shrimp utilizing seagrass beds. Ecological Applications 12 (1): 206–217. https://doi.org/10.1890/1051-0761(2002)012[0206:ATIOBP]2.0.CO;2.CrossRefGoogle Scholar
  6. Bell, S.S., A. Tewfik, M.O. Hall, and M.S. Fonseca. 2008. Evaluation of seagrass planting and monitoring techniques: Implications for assessing restoration success and habitat equivalency. Restoration Ecology 16 (3): 407–416.  https://doi.org/10.1111/j.1526-100X.2007.00308.x.CrossRefGoogle Scholar
  7. Betzabeth, P.-J.E., and L.-C.M. de los Ángeles. 2017. Spatial diversity of a coastal seascape: Characterization, analysis and application for conservation. Ocean & Coastal Management 136: 185–195.  https://doi.org/10.1016/j.ocecoaman.2016.12.002.CrossRefGoogle Scholar
  8. Blaber, S.J.M., and T.G. Blaber. 1980. Factors affecting the distribution of juvenile estuarine and inshore fish. Journal of Fish Biology 17: 143–162.CrossRefGoogle Scholar
  9. Boström, C., E.L. Jackson, and C.A. Simenstad. 2006. Seagrass landscapes and their effects on associated fauna: A review. Estuarine, Coastal and Shelf Science 68 (3-4): 383–403.  https://doi.org/10.1016/j.ecss.2006.01.026.CrossRefGoogle Scholar
  10. Boström, C., S.J. Pittman, C. Simenstad, and R.T. Kneib. 2011. Seascape ecology of coastal biogenic habitats: Advances, gaps, and challenges. Marine Ecology Progress Series 427: 191–217.  https://doi.org/10.3354/meps09051.CrossRefGoogle Scholar
  11. Braun-Blanquet J. 1972. Plant sociology: the study of plant communities. HafnerGoogle Scholar
  12. Burnham K.P., and Anderson D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.). Springer-Verlag, BerlinGoogle Scholar
  13. Campbell, M.L. 2002. Getting the foundation right: A scientifically based management framework to aid in the planning and implementation of seagrass transplant efforts. Bulletin of Marine Science 71: 1405–1414.Google Scholar
  14. Campolmi, M., G. Sarà, A. Galioto, D. Baratta, and P. Franzoi. 1996. Indagine sulla comunità ittica riparia di una laguna costiera mediterranea, durante cicli nictemerali di campionamento. Biologia Marina Mediterranea 3: 499–500.Google Scholar
  15. Caniglia, G., S. Borella, D. Curiel, P. Nascimbeni, A.F. Paloschi, A. Rismondo, F. Scarton, D. Tagliapietra, and L. Zanella. 1990. Cartografia della distribuzione delle fanerogame marine nella laguna di Venezia. Giornale Botanico Italiano 124: 212.Google Scholar
  16. Connolly, R.M., and J.S. Hindell. 2006. Review of nekton patterns and ecological processes in seagrass landscapes. Estuarine, Coastal and Shelf Science 68: 433–444.  https://doi.org/10.1016/j.ecss.2006.01.023.CrossRefGoogle Scholar
  17. Curiel, D., E. Checchin, C. Miotti, A. Pierini, and A. Rismondo. 2014. Praterie a fanerogame marine della laguna di Venezia - aggiornamento cartografico al 2010 e confronto storico. Lavori della Società Veneziana di Scienze Naturali 39: 55–66.Google Scholar
  18. Dance, M.A., and J.R. Rooker. 2015. Habitat- and bay-scale connectivity of sympatric fishes in an estuarine nursery. Estuarine, Coastal and Shelf Science 167: 447–457.  https://doi.org/10.1016/j.ecss.2015.10.025.CrossRefGoogle Scholar
  19. Davis, B., R. Baker, and M. Sheaves. 2014. Seascape and metacommunity processes regulate fish assemblage structure in coastal wetlands. Marine Ecology Progress Series 500: 187–202.  https://doi.org/10.3354/meps10680.CrossRefGoogle Scholar
  20. Elliott, M., and K.L. Hemingway. 2002. Fishes in Estuaries. Oxford: Blackwell Science.CrossRefGoogle Scholar
  21. Elliott, M., and V. Quintino. 2007. The Estuarine Quality Paradox, Environmental Homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine pollution bulletin 54 (6): 640–645.  https://doi.org/10.1016/j.marpolbul.2007.02.003.CrossRefGoogle Scholar
  22. Engelhard, S.L., C.M. Huijbers, B. Stewart-Koster, A.D. Olds, T.A. Schlacher, and R.M. Connolly. 2016. Prioritizing seascape connectivity in conservation using network analysis. Journal of Applied Ecology 54 (4): 1130–1141.  https://doi.org/10.1111/1365-2664.12824.CrossRefGoogle Scholar
  23. Facca C., Bonometto A., Boscolo R., Buosi A., Parravicini M., Siega A., Volpe V., and Sfriso A. 2014a. Coastal Lagoon Recovery By Seagrass Restoration. A New Strategic Approach To Meet HD & WFD Objectives. In Proceedings of the 9th European Conference on Ecological Restoration. Oulu, Finland, 3-8 August 2014Google Scholar
  24. Facca C., Ceoldo S., Pellegrino N., and Sfriso A. 2014b. Natural recovery and planned intervention in coastal wetlands: Venice lagoon (Northern Adriatic Sea, Italy) as a case study. The Scientific World Journal 2014:15 pages.  https://doi.org/10.1155/2014/968618 Google Scholar
  25. Flynn, A.J., and D.A. Ritz. 1999. Effect of habitat complexity and predatory style on the capture success of fish feeding on aggregated prey. Journal of the Marine Biological Association of the UK 79: 487–494.  https://doi.org/10.1017/S0025315498000617.CrossRefGoogle Scholar
  26. Ford, J.R., R.J. Williams, A.M. Fowler, D.R. Cox, and I.M. Suthers. 2010. Identifying critical estuarine seagrass habitat for settlement of coastally spawned fish. Marine Ecology Progress Series 408: 181–193.  https://doi.org/10.3354/meps08582.CrossRefGoogle Scholar
  27. Franco, A., M. Elliott, P. Franzoi, and P. Torricelli. 2008. Life strategies of fishes in European estuaries: the functional guild approach. Marine Ecology Progress Series 354: 219–228.  https://doi.org/10.3354/meps07203.CrossRefGoogle Scholar
  28. Franco, A., P. Franzoi, S. Malavasi, F. Riccato, and P. Torricelli. 2006a. Fish assemblages in different shallow water habitats of the Venice Lagoon. Hydrobiologia 555 (1): 159–174.CrossRefGoogle Scholar
  29. Franco, A., P. Franzoi, S. Malavasi, F. Riccato, P. Torricelli, and D. Mainardi. 2006b. Use of shallow water habitats by fish assemblages in a Mediterranean coastal lagoon. Estuarine, Coastal and Shelf Science 66 (1-2): 67–83.  https://doi.org/10.1016/j.ecss.2005.07.020.CrossRefGoogle Scholar
  30. Franco, A., S. Malavasi, F. Pranovi, P. Franzoi, and P. Torricelli. 2012. Age and reproductive investment in grass goby females in the Venice lagoon. Environmental Biology of Fishes 93 (3): 419–425.  https://doi.org/10.1007/s10641-011-9931-y.CrossRefGoogle Scholar
  31. Franco, A., F. Riccato, P. Torricelli, and P. Franzoi. 2009. Fish assemblage response to environmental pressures in the Venice lagoon. Transitional Waters Bulletin 3: 29–44.  https://doi.org/10.1285/i1825229Xv3n1p29.CrossRefGoogle Scholar
  32. Franzoi, P., A. Franco, and P. Torricelli. 2010. Fish assemblage diversity and dynamics in the Venice lagoon. Rendiconti Lincei 21 (3): 269–281.  https://doi.org/10.1007/s12210-010-0079-z.CrossRefGoogle Scholar
  33. Franzoi, P., F. Riccato, A. Franco, and P. Torricelli. 2004. Dietary differences in three pipefish species (Osteichthyes, Syngnathidae) related to snout morphology. Biologia Marina Mediterranea 11: 592–594.Google Scholar
  34. Franzoi, P., R. Maccagnani, R. Rossi, and V.U. Ceccherelli. 1993. Life cycles and feeding habits of Syngnathus taenionotus and S. abaster (Pisces, Syngnathidae) in a brackish bay of the Po River Delta (Adriatic Sea). Marine Ecology Progress Series 97: 71–81.  https://doi.org/10.3354/meps097071.CrossRefGoogle Scholar
  35. Froese R., and Pauly D. 2015. FishBase. http://www.fishbase.org.
  36. Gilby, B.L., I.R. Tibbetts, A.D. Olds, P.S. Maxwell, and T. Stevens. 2016. Seascape context and predators override water quality effects on inshore coral reef fish communities. Coral Reefs 35 (3): 979–990.  https://doi.org/10.1007/s00338-016-1449-5.CrossRefGoogle Scholar
  37. Green, B.C., D.J. Smith, S.E. Earley, L.J. Hepburn, and G.J.C. Underwood. 2009. Seasonal changes in community composition and trophic structure of fish populations of five salt marshes along the Essex coastline, United Kingdom. Estuarine, Coastal and Shelf Science 85 (2): 247–256.  https://doi.org/10.1016/j.ecss.2009.08.008.CrossRefGoogle Scholar
  38. Grober-Dunsmore, R., S.J. Pittman, C. Caldow, M.S. Kendall, and T.K. Frazer. 2009. A Landscape Ecology Approach for the Study of Ecological Connectivity Across Tropical Marine Seascapes. In Ecological Connectivity among Tropical Coastal Ecosystems, ed. I. Nagelkerken, 493–530 Springer Science+Business Media.CrossRefGoogle Scholar
  39. Harborne, A.R., P.J. Mumby, K. Zychaluk, J.D. Hedley, and P.G. Blackwell. 2006. Modeling the beta diversity of coral reefs. Ecology 87 (11): 2871–2881. https://doi.org/10.1890/0012-9658(2006)87[2871:MTBDOC]2.0.CO;2.CrossRefGoogle Scholar
  40. Horinouchi, M. 2007. Review of the effects of within-patch scale structural complexity on seagrass fishes. Journal of Experimental Marine Biology and Ecology 350 (1-2): 111–129.  https://doi.org/10.1016/j.jembe.2007.06.015.CrossRefGoogle Scholar
  41. Horinouchi, M. 2009. Horizontal gradient in fish assemblage structures in and around a seagrass habitat: Some implications for seagrass habitat conservation. Ichthyological Research 56 (2): 109–125.  https://doi.org/10.1007/s10228-008-0070-1.CrossRefGoogle Scholar
  42. Howard, R.K., and J.D. Koehn. 1985. Population dynamics and feeding ecology of pipefish (Syngnathidae) associated with eelgrass beds of Western Port, Victoria. Marine and Freshwater Research 36 (3): 361–370.  https://doi.org/10.1071/MF9850361.CrossRefGoogle Scholar
  43. Irlandi, E.A., and M.K. Crawford. 1997. Habitat linkages: the effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish. Oecologia 110 (2): 222–230.  https://doi.org/10.1007/s004420050154.CrossRefGoogle Scholar
  44. Jackson, E.L., M.J. Attrill, and M.B. Jones. 2006a. Habitat characteristics and spatial arrangement affecting the diversity of fish and decapod assemblages of seagrass (Zostera marina) beds around the coast of Jersey (English Channel). Estuarine, Coastal and Shelf Science 68 (3-4): 421–432.  https://doi.org/10.1016/j.ecss.2006.01.024.CrossRefGoogle Scholar
  45. Jackson, E.L., M.J. Attrill, A.A. Rowden, and M.B. Jones. 2006b. Seagrass complexity hierarchies: Influence on fish groups around the coast of Jersey (English Channel). Journal of Experimental Marine Biology and Ecology 330 (1): 38–54.  https://doi.org/10.1016/j.jembe.2005.12.016.CrossRefGoogle Scholar
  46. Jelbart, J.E., P.M. Ross, and R.M. Connolly. 2006. Edge effects and patch size in seagrass landscapes: an experimental test using fish. Marine Ecology Progress Series 319: 93–102.  https://doi.org/10.3354/meps319093.CrossRefGoogle Scholar
  47. Lotze, H.K., M. Coll, and J.A. Dunne. 2011. Historical Changes in Marine Resources, Food-web Structure and Ecosystem Functioning in the Adriatic Sea, Mediterranean. Ecosystems 14 (2): 198–222.  https://doi.org/10.1007/s10021-010-9404-8.CrossRefGoogle Scholar
  48. Macreadie, P.I., J.S. Hindell, G.P. Jenkins, R.M. Connolly, and M.J. Keough. 2009. Fish responses to experimental fragmentation of seagrass habitat. Conservation biology : the journal of the Society for Conservation Biology 23: 644–652.  https://doi.org/10.1111/j.1523-1739.2008.01130.x.CrossRefGoogle Scholar
  49. Macreadie, P.I., J.S. Hindell, M.J. Keough, G.P. Jenkins, and R.M. Connolly. 2010. Resource distribution influences positive edge effects in a seagrass fish. Ecology 91: 2013–2021.CrossRefGoogle Scholar
  50. Magistrato alle Acque di Venezia (ora Provveditorato Interregionale alle OO. PP. del Veneto- Trentino Alto Adige – Friuli Venezia Giulia). 2002. Carta Tecnica della laguna di Venezia. Prodotto dal Concessionario, Consorzio Venezia NuovaGoogle Scholar
  51. Magistrato alle Acque di Venezia (ora Provveditorato Interregionale alle OO. PP. del Veneto - Trentino Alto Adige - Friuli Venezia Giulia) - Selc. 2005. Studio B.12.3/III. La funzionalità dell’ambiente lagunare attraverso rilievi delle risorse alieutiche, dell’avifauna e dell’ittiofauna. Erodibilità del fondale e fattori di disturbo: Rilievi dell’erodibilità del fondale. Rapporto intermedioGoogle Scholar
  52. Magistrato alle Acque di Venezia (ora Provveditorato Interregionale alle OO. PP. del Veneto - Trentino Alto Adige - Friuli Venezia Giulia) - Thetis. 2005. Programma generale delle attività di approfondimento del quadro conoscitivo di riferimento per gli interventi ambientali. 2° stralcio triennale (2003-2006) “Progetto ICSEL”. Attività AGoogle Scholar
  53. Malavasi, S., A. Franco, F. Riccato, C. Valerio, P. Torricelli, and P. Franzoi. 2007. Habitat selection and spatial segregation in three pipefish species. Estuarine, Coastal and Shelf Science 75 (1-2): 143–150.  https://doi.org/10.1016/j.ecss.2007.02.022.CrossRefGoogle Scholar
  54. Malavasi, S., A. Franco, R. Fiorin, P. Franzoi, P. Torricelli, and D. Mainardi. 2005. The shallow water gobiid assemblage of the Venice Lagoon: Abundance, seasonal variation and habitat partitioning. Journal of Fish Biology 67: 146–165.  https://doi.org/10.1111/j.0022-1112.2005.00919.x.CrossRefGoogle Scholar
  55. Marshall, S., and M. Elliott. 1998. Environmental Influences on the Fish Assemblage of the Humber Estuary, U.K. Estuarine, Coastal and Shelf Science 46 (2): 175–184.  https://doi.org/10.1006/ecss.1997.0268.CrossRefGoogle Scholar
  56. Masonjones, H.D., E. Rose, L.B. McRae, and D.L. Dixson. 2010. An examination of the population dynamics of syngnathid fishes within Tampa Bay, Florida, USA. Current Zoology 56: 118–133.Google Scholar
  57. McCloskey, R.M., and R.K.F. Unsworth. 2015. Decreasing seagrass density negatively influences associated fauna. PeerJ 3: e1053.  https://doi.org/10.7717/peerj.1053.CrossRefGoogle Scholar
  58. McCullagh P., and Nelder J.A. 1989. Generalized linear models. Second edition. London, UKGoogle Scholar
  59. McGarigal K., Cushman S.A., Neel M.C., and Ene E. 2002. FRAG- STATS: Spatial Pattern Analysis Program for Categorical Maps. University of Massachusetts, Amherst.Google Scholar
  60. McLusky D.S., and Elliott M. 2004. The estuarine ecosystem: ecology, threats and management, 3rd edn. Oxford University Press, Oxford.CrossRefGoogle Scholar
  61. Molinaroli, E., S. Guerzoni, A. Sarretta, A. Cucco, and G. Umgiesser. 2007. Links between hydrology and sedimentology in the Lagoon of Venice, Italy. Journal of Marine Systems 68 (3-4): 303–317.  https://doi.org/10.1016/j.jmarsys.2006.12.003.CrossRefGoogle Scholar
  62. Molinaroli, E., S. Guerzoni, A. Sarretta, M. Masiol, and M. Pistolato. 2009. Thirty-year changes (1970 to 2000) in bathymetry and sediment texture recorded in the Lagoon of Venice sub-basins, Italy. Marine Geology 258 (1-4): 115–125.  https://doi.org/10.1016/j.margeo.2008.12.001.CrossRefGoogle Scholar
  63. Moore, C.H., K. Van Niel, and E.S. Harvey. 2011. The effect of landscape composition and configuration on the spatial distribution of temperate demersal fish. Ecography 34 (3): 425–435.  https://doi.org/10.1111/j.1600-0587.2010.06436.x.CrossRefGoogle Scholar
  64. Mumby, P.J. 2006. Connectivity of reef fish between mangroves and coral reefs: Algorithms for the design of marine reserves at seascape scales. Biological Conservation 128 (2): 215–222.  https://doi.org/10.1016/j.biocon.2005.09.042.CrossRefGoogle Scholar
  65. Nagelkerken, I., J. Bothwell, R.S. Nemeth, J.M. Pitt, and G. Van Der Velde. 2008. Interlinkage between Caribbean coral reefs and seagrass beds through feeding migrations by grunts (Haemulidae) depends on habitat accessibility. Marine Ecology Progress Series 368: 155–164.  https://doi.org/10.3354/meps07528.CrossRefGoogle Scholar
  66. Nagelkerken, I., M. Sheaves, R. Baker, and R.M. Connolly. 2015. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish and Fisheries 16 (2): 362–371.  https://doi.org/10.1111/faf.12057.CrossRefGoogle Scholar
  67. Nordlund, L.M., E.W. Koch, E.B. Barbier, and J.C. Creed. 2016. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 11 (10): 1–23.  https://doi.org/10.1371/journal.pone.0163091.CrossRefGoogle Scholar
  68. Oliveira, F., K. Erzini, and J.M.S. Gonçalves. 2007. Feeding habits of the deep-snouted pipefish Syngnathus typhle in a temperate coastal lagoon. Estuarine, Coastal and Shelf Science 72 (1-2): 337–347.  https://doi.org/10.1016/j.ecss.2006.11.003.CrossRefGoogle Scholar
  69. Pérez-Ruzafa, A., J.A. García-Charton, E. Barcala, and C. Marcos. 2006. Changes in benthic fish assemblages as a consequence of coastal works in a coastal lagoon: The Mar Menor (Spain, Western Mediterranean). Marine Pollution Bulletin 53 (1-4): 107–120.  https://doi.org/10.1016/j.marpolbul.2005.09.014.CrossRefGoogle Scholar
  70. Pérez-Ruzafa, A., C. Marcos, and I.M. Pérez-Ruzafa. 2011. Mediterranean coastal lagoons in an ecosystem and aquatic resources management context. Physics and Chemistry of the Earth 36 (5-6): 160–166.  https://doi.org/10.1016/j.pce.2010.04.013.CrossRefGoogle Scholar
  71. Perry, D., T.A.B. Staveley, L. Hammar, A. Meyers, R. Lindborg, and M. Gullström. 2017. Temperate fish community variation over seasons in relation to large-scale geographic seascape variables. Canadian Journal of Fisheries and Aquatic Sciences.: 1–10.  https://doi.org/10.1139/cjfas-2017-0032.CrossRefGoogle Scholar
  72. Pittman, S.J., and K.A. Brown. 2011. Multi-scale approach for predicting fish species distributions across coral reef seascapes. PLoS One 6 (5): e20583.  https://doi.org/10.1371/journal.pone.0020583.CrossRefGoogle Scholar
  73. Pittman, S.J., C. Caldow, S.D. Hile, and M.E. Monaco. 2007. Using seascape types to explain the spatial patterns of fish in the mangroves of SW Puerto Rico. Marine Ecology Progress Series 348: 273–284.  https://doi.org/10.3354/meps07052.CrossRefGoogle Scholar
  74. Pittman, S.J., C.A. McAlpine, and K.M. Pittman. 2004. Linking fish and prawns to their environment: a hierarchical landscape approach. Marine Ecology Progress Series 283: 233–254.  https://doi.org/10.3354/meps283233.CrossRefGoogle Scholar
  75. Pollom R. 2016a. Nerophis ophidion. The IUCN Red List of Threatened Species 2016: e.T198764A90906820. Downloaded on 24 January 2017.Google Scholar
  76. Pollom R. 2016b. Syngnathus typhle. The IUCN Red List of Threatened Species 2016: e.T198767A90923410. Downloaded on 24 January 2017.Google Scholar
  77. Quignard, J.P. 1984. Les caracteristiques biologiques et environmentales des lagunes en tant que base biologique de l’amenagement des pecheries. In Management of Coastal Lagoon Fisheries, ed. J.M. Kapetsky and G. Lasserre, 3–38. Rome: FAO Studies and Reviews 61.Google Scholar
  78. Ribeiro, J., G.M. Carvalho, J.M.S. Gonçalves, and K. Erzini. 2012. Fish assemblages of shallow intertidal habitats of the Ria Formosa lagoon (South Portugal): Influence of habitat and season. Marine Ecology Progress Series 446: 259–273.  https://doi.org/10.3354/meps09455.CrossRefGoogle Scholar
  79. Riccato, F., R. Fiorin, A. Franco, P. Franzoi, A. Libertini, F. Pranovi, and P. Torricelli. 2003. Population structure and reproduction of three pipefish species (Pisces, Syngnathidae) in a sea grass meadow of the Venice lagoon. Biologia Marina Mediterranea 10: 138–145.Google Scholar
  80. Rismondo A., Curiel D., Scarton F., Mion D., and Caniglia G. 2003. A New Seagrass Map for the Venice Lagoon. In Proceedings of the Sixth International Conference on the Mediterranean Coastal Environment, MEDCOAST 03, E. Ozhan (Editor), 7-11 October 2003, Ravenna, Ravenna,, 843–852Google Scholar
  81. Robbins, B.D., and S.S. Bell. 1994. Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends in Ecology & EvolutionTrends in ecology & evolution 9: 301–304.  https://doi.org/10.1016/0169-5347(94)90041-8.CrossRefGoogle Scholar
  82. Rozas, L.P., and T.J. Minello. 2007. Restoring coastal habitat using marsh terracing: the effect of cell size on nekton use. Wetlands 27 (3): 595–609. https://doi.org/10.1672/0277-5212(2007)27[595:RCHUMT]2.0.CO;2.CrossRefGoogle Scholar
  83. Ryan, M.R., S.S. Killen, R.S. Gregory, and P.V.R. Snelgrove. 2012. Predators and distance between habitat patches modify gap crossing behaviour of juvenile Atlantic cod (Gadus morhua, L. 1758). Journal of Experimental Marine Biology and Ecology 422–423: 81–87.  https://doi.org/10.1016/j.jembe.2012.04.017.CrossRefGoogle Scholar
  84. Salita, J., W. Ekau, and U. Saint-Paul. 2003. Field evidence on the influence of seagrass landscapes on fish abundance in Bolinao, northern Philippines. Marine Ecology Progress Series 247: 183–195.  https://doi.org/10.3354/meps247183.CrossRefGoogle Scholar
  85. Sarretta, A., S. Pillon, E. Molinaroli, S. Guerzoni, and G. Fontolan. 2010. Sediment budget in the Lagoon of Venice, Italy. Continental Shelf Research 30 (8): 934–949.  https://doi.org/10.1016/j.csr.2009.07.002.CrossRefGoogle Scholar
  86. Sato, M., M. Horinouchi, M. Fujita, and M. Sano. 2016. Responses of fish assemblage structures to annual and perennial life cycles of seagrass Zostera marina in Lake Hamana. Ichthyological Research 63 (4): 1–15.  https://doi.org/10.1007/s10228-016-0514-y.CrossRefGoogle Scholar
  87. Scapin, L., F. Cavraro, S. Malavasi, F. Riccato, M. Zucchetta, and P. Franzoi. 2018. Linking pipefishes and seahorses to seagrass meadows in the Venice lagoon: Implications for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 28 (2): 1–14.  https://doi.org/10.1002/aqc.2860.CrossRefGoogle Scholar
  88. Scapin, L., M. Zucchetta, C. Facca, A. Sfriso, and P. Franzoi. 2016. Using fish assemblage to identify success criteria for seagrass habitat restoration. Web Ecology 16 (1): 33–36.  https://doi.org/10.5194/we-16-33-2016.CrossRefGoogle Scholar
  89. Schultz, S.T., C. Kruschel, and T. Bakran-Petricioli. 2009. Influence of seagrass meadows on predator-prey habitat segregation in an Adriatic lagoon. Marine Ecology Progress Series 374: 85–99.  https://doi.org/10.3354/meps07779.CrossRefGoogle Scholar
  90. Sfriso, A., and C. Facca. 2007. Distribution and production of macrophytes and phytoplankton in the lagoon of Venice: Comparison of actual and past situation. Hydrobiologia 577 (1): 71–85.  https://doi.org/10.1007/s10750-006-0418-3.CrossRefGoogle Scholar
  91. Sfriso, A., C. Facca, S. Ceoldo, and A. Marcomini. 2005a. Recording the occurrence of trophic level changes in the lagoon of Venice over the ’90s. Environment international 31 (7): 993–1001.  https://doi.org/10.1016/j.envint.2005.05.009.CrossRefGoogle Scholar
  92. Sfriso, A., C. Facca, and A. Marcomini. 2005b. Sedimentation rates and erosion processes in the lagoon of Venice. Environment International 31 (7): 983–992.  https://doi.org/10.1016/j.envint.2005.05.008.CrossRefGoogle Scholar
  93. Sfriso, A., and P.F. Ghetti. 1998. Seasonal variation in biomass, morphometric parameters and production of seagrasses in the lagoon of Venice. Aquatic Botany 61 (3): 207–223.  https://doi.org/10.1016/S0304-3770(98)00064-3.CrossRefGoogle Scholar
  94. Sheaves, M. 2009. Consequences of ecological connectivity: The coastal ecosystem mosaic. Marine Ecology Progress Series 391: 107–115.  https://doi.org/10.3354/meps08121.CrossRefGoogle Scholar
  95. Short, F.T., D.M. Burdick, C.A. Short, R.C. Davis, and P.A. Morgan. 2000. Developing success criteria for restored eel-grass, salt marsh and mud flat habitats. Ecological Engineering 15 (3-4): 239–252.  https://doi.org/10.1016/S0925-8574(00)00079-3.CrossRefGoogle Scholar
  96. Smith, T.M., J.S. Hindell, G.P. Jenkins, and R.M. Connolly. 2010. Seagrass patch size affects fish responses to edges. Journal of Animal Ecology 79: 275–281.  https://doi.org/10.1111/j.1365-2656.2009.01605.x.CrossRefGoogle Scholar
  97. Smith, T.M., J.S. Hindell, G.P. Jenkins, and R.M. Connolly. 2008. Edge effects on fish associated with seagrass and sand patches. Marine Ecology Progress Series 359: 203–213.  https://doi.org/10.3354/meps07348.CrossRefGoogle Scholar
  98. Smith, T.M., J.S. Hindell, G.P. Jenkins, R.M. Connolly, and M.J. Keough. 2011. Edge effects in patchy seagrass landscapes: The role of predation in determining fish distribution. Journal of Experimental Marine Biology and Ecology 399: 8–16.  https://doi.org/10.1016/j.jembe.2011.01.010.CrossRefGoogle Scholar
  99. Solidoro, C., V. Bandelj, F.A. Bernardi, E. Camatti, S. Ciavatta, G. Cossarini, R. Pastres, F. Pranovi, S. Raicevich, G. Socal, A. Sfriso, M. Sigovini, D. Tagliapietra, and P. Torricelli. 2010. Response of the Venice Lagoon Ecosystem to Natural and Anthropogenic Pressures over the Last 50 Years. In Coastal Lagoons: Critica Habitats of Environmental Change, ed. M.J. Kennish and H.W. Paerl, 483–512. Boca Raton: CRC Marine Science.CrossRefGoogle Scholar
  100. Solidoro, C., D. Melaku canu, A. Cucco, and G. Umgiesser. 2004. A partition of the Venice Lagoon based on physical properties and analysis of general circulation. Journal of Marine Systems 51: 147–160.CrossRefGoogle Scholar
  101. Staveley, T.A.B., D. Perry, R. Lindborg, and M. Gullström. 2017. Seascape structure and complexity influence temperate seagrass fish assemblage composition. Ecography 40: 936–946.  https://doi.org/10.1111/ecog.02745.CrossRefGoogle Scholar
  102. Steffe, A.S., M. Westoby, and J.D. Bell. 1989. Habitat selection and diet in two species of pipefish from seagrass: Sex differences. Marine Ecology Progress Series 55: 23–30.  https://doi.org/10.3354/meps055023.CrossRefGoogle Scholar
  103. Thistle, M.E., D.C. Schneider, R.S. Gregory, and N.J. Wells. 2010. Fractal measures of habitat structure: Maximum densities of juvenile cod occur at intermediate eelgrass complexity. Marine Ecology Progress Series 405: 39–56.  https://doi.org/10.3354/meps08511.CrossRefGoogle Scholar
  104. Uhrin, A.V., M.O. Hall, M.F. Merello, and M.S. Fonseca. 2009. Survival and expansion of mechanically transplanted seagrass sods. Restoration Ecology 17: 359–368.  https://doi.org/10.1111/j.1526-100X.2008.00376.x.CrossRefGoogle Scholar
  105. Umgiesser, G., D. Melaku canu, A. Cucco, and C. Solidoro. 2004. A finite element model for the Venice Lagoon. Development, set up, calibration and validation. Journal of Marine Systems 51: 123–145.CrossRefGoogle Scholar
  106. van Katwijk, M.M., A.R. Bos, V.N. de Jonge, L.S.A.M. Hanssen, D.C.R. Hermus, and D.J. de Jong. 2009. Guidelines for seagrass restoration: Importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Marine Pollution Bulletin 58: 179–188.  https://doi.org/10.1016/j.marpolbul.2008.09.028.CrossRefGoogle Scholar
  107. Vasconcelos, R.P., P. Reis-Santos, V. Fonseca, A. Maia, M. Ruano, S. França, C. Vinagre, M.J. Costa, and H. Cabral. 2007. Assessing anthropogenic pressures on estuarine fish nurseries along the Portuguese coast: a multi-metric index and conceptual approach. The Science of the total environment 374: 199–215.  https://doi.org/10.1016/j.scitotenv.2006.12.048.CrossRefGoogle Scholar
  108. Viaroli, P., M. Bartoli, G. Giordani, M. Naldi, S. Orfanidis, and J.M. Zaldivar. 2008. Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquatic Conservation: Marine and Freshwater. Ecosystems 18: 105–117.  https://doi.org/10.1002/aqc.CrossRefGoogle Scholar
  109. Vizzini, S., and A. Mazzola. 2004. The trophic structure of the pipefish community (Pisces: Syngnathidae) from a western Mediterranean seagrass meadow based on stable isotope analysis. Estuaries 27 (2): 325–333.  https://doi.org/10.1007/BF02803388.CrossRefGoogle Scholar
  110. Weinstein, M.P., and S.Y. Litvin. 2016. Macro-Restoration of Tidal Wetlands: A Whole Estuary Approach. Ecological Restoration 34: 27–38.  https://doi.org/10.3368/er.34.1.27.CrossRefGoogle Scholar
  111. Whitfield, A.K. 2016. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Reviews in Fish Biology and Fisheries. 27 (1): 75–110.  https://doi.org/10.1007/s11160-016-9454-x.CrossRefGoogle Scholar
  112. Wiens, J.A. 1995. Habitat fragmentation: island vs landscape perspectives on bird conservation. Ibis 137: S97–S104.CrossRefGoogle Scholar
  113. Yeager, L.A., C.A. Layman, and J.E. Allgeier. 2011. Effects of habitat heterogeneity at multiple spatial scales on fish community assembly. Oecologia 167 (1): 157–168.  https://doi.org/10.1007/s00442-011-1959-3.CrossRefGoogle Scholar
  114. Zucchetta, M., G. Cipolato, F. Pranovi, P. Antonetti, P. Torricelli, P. Franzoi, and S. Malavasi. 2012. The relationships between temperature changes and reproductive investment in a Mediterranean goby: Insights for the assessment of climate change effects. Estuarine, Coastal and Shelf Science 101: 15–23.  https://doi.org/10.1016/j.ecss.2012.01.009.CrossRefGoogle Scholar
  115. Zucchetta M., Scapin L., Cavraro F., Pranovi F., Franco A., and Franzoi P. 2016. Can the effects of anthropogenic pressures and environmental variability on nekton fauna be detected in fishery data? Insights from the monitoring of the artisanal fishery within the Venice lagoon. Estuaries and Coasts 39:1.  https://doi.org/10.1007/s12237-015-0064-y, 4, 1164, 1182CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze Ambientali, Informatica e Statistica (DAIS)Università Ca’ Foscari VeneziaVeneziaItaly

Personalised recommendations