Advertisement

Estuaries and Coasts

, Volume 41, Issue 6, pp 1766–1781 | Cite as

Functional Performance of Three Invasive Marenzelleria Species Under Contrasting Ecological Conditions Within the Baltic Sea

  • Cintia O. Quintana
  • Caroline Raymond
  • Francisco J. A. Nascimento
  • Stefano Bonaglia
  • Stefan Forster
  • Jonas S. Gunnarsson
  • Erik Kristensen
Article

Abstract

A 4-week laboratory experiment investigated the behaviour (survival and bioirrigation) and impact of the invasive polychaetes Marenzelleria viridis, M. neglecta and M. arctia on sediment-water solutes exchange, porewater chemistry, and Fe and P interactions in high-salinity sandy sediment (HSS) and low-salinity muddy sediment (LSM) from the Baltic Sea. M. viridis showed deep burrowing with efficient bioirrigation (11 L m−2 day−1) and high survival (71%) in HSS, while M. arctia exhibited shallow burrowing with high bioirrigation (12 L m−2 day−1) and survival (88%) in LSM. M. neglecta behaved poorly in both ecological settings (bioirrigation, 5–6 L m−2 day−1; survival, 21–44%). The deep M. viridis bioirrigation enhanced total microbial CO2 (TCO2) production in HSS by 175% with a net efflux of NH4+ and PO43−, at rates 3- to 27-fold higher than for the other species. Although the shallow and intense bioirrigation of M. arctia in LSM stimulated microbial TCO2 production to some extent (61% enhancement), the nutrient fluxes close to zero indicate that it effectively prevented the P release. Porewater Fe:PO43− ratios revealed that the oxidizing effect of M. arctia bioirrigation increased the PO43− adsorption capacity of LSM twofold relative to defaunated controls while no buffering of PO43− was detected in M. viridis HSS treatment. Therefore, the different behaviour of the three species in various environments and the sharp contrast between M. viridis and M. arctia effects on C, N and P cycling must be considered carefully when the ecological role of Marenzelleria species in the Baltic Sea is evaluated.

Keywords

Bioirrigation Invasive species Sediment biogeochemistry Nutrient cycling Eutrophication P retention 

Notes

Acknowledgments

We are thankful to Alf Norkko and Joanna Norkko for organizing a workshop on the state-of-art Marenzelleria research in 2011 at Tvärminne Station, Finland, which provided collaborations and valuable discussions with other scientists. We thank Ralf Bastrop for sampling M. neglecta worms in Germany and transporting them safely to Denmark.

Funding

The work was funded by the Sao Paulo Research Support Foundation (FAPESP, no. 2012/06121-1) to COQ, by the Danish Council for Independent Research (contract no. 12-127012) to EK and by the Swedish Agency for Marine and Water Management (grant no. 202100-3062) to JG and CR. FN was funded by Formas Mobility Grant (no. 2013-1322).

References

  1. Aller, R.C., and J.E. Mackin. 1989. Open-incubation, diffusion methods for measuring solute reaction rates in sediments. Journal of Marine Research 47 (2): 411–440.  https://doi.org/10.1357/002224089785076262.CrossRefGoogle Scholar
  2. Banta, G.T., M. Holmer, M.H. Jensen, and E. Kristensen. 1999. Effects of two polychaete worms, Nereis diversicolor and Arenicola marina, on aerobic and anaerobic decomposition in sandy marine sediment. Marine Ecology Progress Series 19: 189−204.Google Scholar
  3. Berner, R.A. 1980. Early diagenesis, a theoretical approach, 291. New Jersey: Princeton University Press.Google Scholar
  4. Bianchi, T.S., C. Rolff, B. Widbom, and R. Elmgreen. 2002. Phytoplankton pigments in Baltic Sea seston and sediments: Seasonal variability, fluxes and transformations. Estuarine Coastal and Shelf Science 55: 369−383.CrossRefGoogle Scholar
  5. Blank, M., R. Bastrop, and K. Jürss. 2006. Stress protein response in two sibling species of Marenzelleria (Polychaeta: Spionidae): Is there an influence of acclimation salinity? Comparative Biochemistry and Physiology, Part B 144: 451−462.CrossRefGoogle Scholar
  6. Blank, M., A. Laine, K. Jürss, and R. Bastrop. 2008. Molecular identification key based on PCR/RFLP for three polychaete sibling species of the genus Marenzelleria, and the species current distribution in the Baltic Sea. Helgoland Marine Research 62: 129−141.CrossRefGoogle Scholar
  7. Bonaglia, S., M. Bartoli, J.S. Gunnarsson, L. Rahm, C. Raymond, O. Svensson, S. Shakeri Yekta, and V. Brüchert. 2013. Effects of reoxygenation and Marenzelleria spp. bioturbation on Baltic Sea sediment metabolism. Marine Ecology Progress Series 482: 43−55.CrossRefGoogle Scholar
  8. Boudreau, B.P. 1997. Diagenetic models and their implementation: Modelling transport reactions in aquatic sediments. New York: Springer.  https://doi.org/10.1007/978-3-642-60421-8.CrossRefGoogle Scholar
  9. Caballero-Alfonso, A., J. Carstensen, and D.J. Conley. 2015. Biogeochemical and environmental drivers of coastal hypoxia. Journal of Marine Systems 141: 190−199.CrossRefGoogle Scholar
  10. Cline, J.D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnolology and Oceanography 14: 454–458.CrossRefGoogle Scholar
  11. Conley, D.J., S. Bjorck, E. Bonsdorff, J. Carstensen, G. Deustoni, B.G. Gustafsson, S. Hietanen, M. Kortekaas, H. Kuosa, H.D. Markus Mier, B. Müller-Karulis, K. Nordberg, A. Norkko, G. Nürnberg, H. Pitkänen, N.N. Rabalais, R. Rosenberg, O.P. Savchuk, C.L. Slomp, M. Voss, F. Wulff, and L. Zillén. 2009. Hypoxia-related processes in the Baltic Sea. Environmental Science & Technology 43: 3412−3420.Google Scholar
  12. Conley, D.J., J. Carstensen, J. Aigars, P. Axe, E. Bonsdorff, T. Eremina, B.M. Haahti, C. Humborg, P. Jonsson, J. Kotta, C. Lannegren, U. Larsson, A. Maximov, M.R. Medina, E. Lysiak-Pastuszak, N. Remeikaite-Nikiene, J. Walve, S. Wilhelms, and L. Zillen. 2011. Hypoxia is increasing in the coastal zone of the Baltic Sea. Environmental Science & Technology 45 (16): 6777–6783.  https://doi.org/10.1021/es201212r.CrossRefGoogle Scholar
  13. Delefosse, M., G.T. Banta, P. Canal-Vergés, G. Penha-Lopes, C.O. Quintana, T. Valdemarsen, and E. Kristensen. 2012. Macrobenthic community response to the Marenzelleria viridis (Polychaeta) invasion in a Danish estuary. Marine Ecology Progress Series 461: 83−94.CrossRefGoogle Scholar
  14. Dell’Anno, A., M.L. Mei, A. Pusceddu, and R. Danovaro. 2002. Assessing the trophic state and eutrophication of coastal marine systems: A new approach based on the biochemical composition of the sediment organic matter. Marine Pollution Bulletin 44: 611−622.Google Scholar
  15. Duarte, C.M., D.J. Conley, J. Carstensen, and M. Sánchez-Camacho. 2009. Return to Neverland: Shifting baselines affect eutrophication restoration targets. Estuaries and Coasts 32 (1): 29–36.  https://doi.org/10.1007/s12237-008-9111-2.CrossRefGoogle Scholar
  16. Ekeroth, E., S. Blomqvist, and P.O.J. Hall. 2016. Nutrient fluxes from reduced Baltic Sea sediment: Effects of oxygenation and macrobenthos. Marine Ecology Progress Series 544: 77−92.CrossRefGoogle Scholar
  17. Forster, S., A. Khalili, and J. Kitlar. 2003. Variations in nonlocal irrigation in a subtidal benthic community. Journal of Marine Research 61 (3): 335–357.  https://doi.org/10.1357/002224003322201223.CrossRefGoogle Scholar
  18. Gunnars, A., and S. Blomqvist. 1997. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions—An experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 37 (3): 203–226.  https://doi.org/10.1023/A:1005744610602.CrossRefGoogle Scholar
  19. Hall, P.O.J., and R.C. Aller. 1992. Rapid, small-volume, flow injection analysis for ∑CO2 and NH4 + in marine and freshwaters. Limnology and Oceanography 37 (5): 1113–1119.  https://doi.org/10.4319/lo.1992.37.5.1113.CrossRefGoogle Scholar
  20. Hedman, J.E., J.S. Gunnarsson, G. Samuelsson, and F. Gilbert. 2011. Particle reworking and solute transport by the sediment-living polychaetes Marenzelleria neglecta and Hediste diversicolor. Journal of Experimental Marine Biology and Ecology 407: 294−301.CrossRefGoogle Scholar
  21. Hietanen, S., A.O. Laine, and K. Lukkari. 2007. The complex effects of the invasive polychaete Marenzelleria spp. on benthic nutrient dynamics. Journal of Experimental Marine Biology and Ecology 352: 89−102.CrossRefGoogle Scholar
  22. Jørgensen, L.L., T.H. Pearson, N.A. Anisimova, B. Gulliksen, S. Dahle, S.G. Denisenko, and G.G. Matishov. 1999. Environmental influences on benthic fauna associations of the Kara Sea (Arctic Russia). Polar Biology 22: 395–416.CrossRefGoogle Scholar
  23. Jovanovic, Z., M. Larsen, C.O. Quintana, E. Kristensen, and R.N. Glud. 2014. Oxygen dynamics and porewater transport in sediments inhabited by the invasive polychaete Marenzelleria viridis. Marine Ecology Progress Series 504: 181−192.CrossRefGoogle Scholar
  24. Karlsson, O.M., P.O. Jonsson, D. Lindgren, J.M. Malmaeus, and A. Stehn. 2010. Indications of recovery from hypoxia in the inner Stockholm archipelago. Ambio 39 (7): 486–495.  https://doi.org/10.1007/s13280-010-0079-3.CrossRefGoogle Scholar
  25. Kauppi, L., A. Norkko, and J. Norkko. 2015. Large-scale species invasion into a low diversity system: Spatial and temporal distribution of the invasive polychaetes Marenzelleria spp. in the Baltic Sea. Biological Invasions 17: 2055−2074.CrossRefGoogle Scholar
  26. Koroleff, K. 1983. Determination of phosphorus. In Methods of seawater analysis, ed. K. Grasshoff, M. Erhardt, and K. Kremling, 2nd ed. Weinheim: Verlag Chemie.Google Scholar
  27. Kristensen, E. 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments with emphasis on the role of burrowing animals. Hydrobiologia 426 (1): 1–24.  https://doi.org/10.1023/A:1003980226194.CrossRefGoogle Scholar
  28. Kristensen, E., and K. Hansen. 1999. Transport of carbon dioxide and ammonium in bioturbated (Nereis diversicolor) coastal, marine sediments. Biogeochemistry 45 (2): 147–168.  https://doi.org/10.1007/BF01106779.CrossRefGoogle Scholar
  29. Kristensen, E., and M. Holmer. 2001. Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3 , and SO4 2−), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. Geochimica et Cosmochimica Acta 65: 419−433.CrossRefGoogle Scholar
  30. Kristensen, E., T. Hansen, M. Delefosse, G.T. Banta, and C.O. Quintana. 2011. Contrasting effects of the polychaetes Marenzelleria viridis and Nereis diversicolor on the benthic metabolism and solute transport in sandy coastal sediment. Marine Ecology Progress Series 425: 125−139.CrossRefGoogle Scholar
  31. Li, Y., and S. Gregory. 1974. Diffusion of ions in sea water and deep-sea sediments. Geochimica et Cosmoschimica Acta 38: 703–718.CrossRefGoogle Scholar
  32. Lovley, D.R., and E.J.P. Phillips. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology 53 (7): 1536–1540.Google Scholar
  33. Martin, W.R., and G.T. Banta. 1992. The measurement of sediment irrigation rates: A comparison of the Br tracer and 222Rn/226Ra disequilibrium techniques. Journal of Marine Research 50: 125−154.CrossRefGoogle Scholar
  34. Meysman, F., O. Galaktionov, and J.J. Middelburg. 2005. Irrigation in permeable sediments induced by burrow ventilation: A case study of Arenicola marina. Marine Ecology Progress Series 303: 194–212.CrossRefGoogle Scholar
  35. Norkko, J., D.C. Reed, K. Timmermann, A. Norkko, B.F. Gustafsson, E. Bonsdorff, C.P. Slomp, J. Carstensen, and D.J. Conley. 2012. A welcome can of worms? Hypoxia mitigation by an invasive species. Global Change Biology 18: 422−434.CrossRefGoogle Scholar
  36. Olenin, S., and E. Leppäkoski. 1999. Non-native animals in the Baltic Sea: Alteration of benthic habitats in coastal inlets and lagoons. Hydrobiologia 393: 233–243.  https://doi.org/10.1023/A:1003511003766.CrossRefGoogle Scholar
  37. Quintana, C.O., T. Hansen, M. Delefosse, G.T. Banta, and E. Kristensen. 2011. Burrow ventilation and associated porewater irrigation by the polychaete Marenzelleria viridis. Journal of Experimental Marine Biology and Ecology 397 (2): 179–187.  https://doi.org/10.1016/j.jembe.2010.12.006.CrossRefGoogle Scholar
  38. Quintana, C.O., E. Kristensen, and T. Valdemarsen. 2013. Impact of the invasive polychaete Marenzelleria viridis on the biogeochemistry of sandy marine sediments. Biogeochemistry 115 (1-3): 95–109.  https://doi.org/10.1007/s10533-012-9820-2.CrossRefGoogle Scholar
  39. Renz, J.R., and S. Forster. 2013. Are similar worms different? A comparative tracer study on bioturbation in the three sibling species Marenzelleria arctia, M. viridis, and M. neglecta from the Baltic Sea. Limnology and Oceanography 58: 2046−2058.CrossRefGoogle Scholar
  40. Renz, J.R., and S. Forster. 2014. Effects of bioirrigation by three sibling species of Marenzelleria spp. on solute fluxes and porewater nutrient profiles. Marine Ecology Progress Series 505: 145–159.  https://doi.org/10.3354/meps10756.CrossRefGoogle Scholar
  41. Schiedek, D. 1997. Marenzelleria viridis (Verrill, 1873) (Polychaeta), a new benthic species within European coastal waters. Some metabolic features. Journal of Experimental Marine Biology and Ecology 211 (1): 85–101.  https://doi.org/10.1016/S0022-0981(96)02714-1.CrossRefGoogle Scholar
  42. Stookey, L.L. 1970. Ferrozine—a new spectrophotometric reagent for iron. Analytical Chemistry 42 (7): 779–781.  https://doi.org/10.1021/ac60289a016.CrossRefGoogle Scholar
  43. Sundby, B., C. Gobeil, N. Silverberg, and A. Mucci. 1992. The phosphorus cycle in marine sediments. Limnology and Oceanography 37 (6): 1129–1145.  https://doi.org/10.4319/lo.1992.37.6.1129.CrossRefGoogle Scholar
  44. Tang, M., and E. Kristensen. 2007. Impact of microphytobenthos and macroinfauna on temporal variation of benthic metabolism in shallow coastal sediments. Journal of Experimental Marine Biology and Ecology 349 (1): 99–112.CrossRefGoogle Scholar
  45. Urban-Malinga, B., J. Warzocha, and M. Zalewski. 2013. Effects of the invasive polychaete Marenzelleria spp. on benthic processes and meiobenthos of a species-poor brackish system. Journal of Sea Research 80: 25−34.CrossRefGoogle Scholar
  46. Valdemarsen, T., C.O. Quintana, M.R. Flindt, and E. Kristensen. 2015. Organic N and P in eutrophic fjord sediments—Rates of mineralization and consequences for internal nutrient loading. Biogeosciences 12: 1765−1779.CrossRefGoogle Scholar
  47. Viitasalo-Frösén, S., A.O. Laine, and M. Lehtiniemi. 2009. Habitat modification mediated by motile surface stirrers versus semi-motile burrowers: Potential for a positive feedback mechanism in a eutrophied system. Marine Ecology Progress Series 376: 21−32.CrossRefGoogle Scholar
  48. Viktorsson, L., N. Ekeroth, M. Nilsson, M. Kononets, and P.O.J. Hall. 2013. Phosphorus recycling in sediments of the central Baltic Sea. Biogeosciences 10 (6): 3901–3916.  https://doi.org/10.5194/bg-10-3901-2013.CrossRefGoogle Scholar
  49. Zettler, M.L., D. Schiedek, and B. Bobertz. 2007. Benthic diversity indices versus salinity gradient in the southern Baltic Sea. Marine Pollution Bulletin 55: 258−270.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2018

Authors and Affiliations

  • Cintia O. Quintana
    • 1
  • Caroline Raymond
    • 2
  • Francisco J. A. Nascimento
    • 2
  • Stefano Bonaglia
    • 2
  • Stefan Forster
    • 3
  • Jonas S. Gunnarsson
    • 2
  • Erik Kristensen
    • 1
  1. 1.Department of BiologyUniversity of Southern DenmarkOdense MDenmark
  2. 2.Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
  3. 3.Institute of Biological Sciences, Marine BiologyUniversity of RostockRostockGermany

Personalised recommendations