Nutrients in Saltmarsh Soils Are Weakly Related to those in Adjacent Coastal Waters

  • Marcin R. PenkEmail author
  • Robert Wilkes
  • Philip M. Perrin
  • Stephen Waldren


Saltmarshes provide a broad range of high-value ecosystem services and can be sensitive to eutrophication, but elucidating such impacts at broad spatial scales demands a better understanding of the underlying nutrient linkages between saltmarsh soil and tidal waters. We used existing water quality data and field surveys of 15 saltmarshes across a broad trophic gradient of coastal waters, but similar biogeographic setting (in Ireland) to investigate if phosphorus and nitrogen pools in saltmarsh soils are related to those in tidal water across saltmarshes. We also investigated if the strength of such relationships is inversely related to ground elevation, which approximates the degree of tidal inundation. Plant-available phosphorus and nitrogen pools in soil were related to water nutrients, albeit only weakly. We did not find any support for the moderating influence of elevation, indicating that it may be obscured by internal cycling and external sources. We also found evidence for effect of birds on the saltmarsh nutrient pool. Saltmarsh soils are unlikely to serve as general sentinels of nutrient conditions in their corresponding water bodies and may need separate assessment criteria and management tools, which in turn require disentangling localised and whole-saltmarsh sources of variation in nutrient concentrations.


Coastal eutrophication Ecosystem connectivity Integrated management Trophic conditions Water Framework Directive Ireland 



The authors thank Sorcha Ní Longphuirt (EPA) for assistance in retrieving water quality data, and Yana Bersunukayeva and Alanna Kirwan for laboratory help. Fionnuala O’Neill and Emmi Virkki assisted with fieldwork. The authors also thank anonymous reviewers whose comments improved this manuscript.


This study was funded by the Environmental Protection Agency (EPA) as part of the SAMFHIRES project (Saltmarsh Function and Human Impacts in Relation to Ecological Status) (2015-W-MS-19).

Supplementary material

12237_2018_486_MOESM1_ESM.docx (58 kb)
Supplementary File 1 (DOCX 58.4 kb)
12237_2018_486_MOESM2_ESM.docx (309 kb)
Supplementary File 2 (DOCX 308 kb)
12237_2018_486_MOESM3_ESM.docx (107 kb)
Supplementary File 3 (DOCX 107 kb)


  1. Abd Aziz, S.A., and D.B. Nedwell. 1986a. The nitrogen cycle of an East Coast, U.K., saltmarsh: I. Nitrogen assimilation during primary production; detrital mineralization. Estuarine, Coastal and Shelf Science 22: 559–575.CrossRefGoogle Scholar
  2. Abd Aziz, S.A., and D.B. Nedwell. 1986b. The nitrogen cycle of an East Coast, U.K. saltmarsh: II. Nitrogen fixation, nitrification, denitrification, tidal exchange. Estuarine, Coastal and Shelf Science 22: 689–704.CrossRefGoogle Scholar
  3. Adam, P. 2002. Saltmarshes in a time of change. Environmental Conservation 29: 39–61.CrossRefGoogle Scholar
  4. Barnes, A.D., M. Jochum, J.S. Lefcheck, N. Eisenhauer, C. Scherber, M.I. O’Connor, P. de Ruiter, and U. Brose. 2018. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends in Ecology and Evolution. 33 (3): 186–197.CrossRefGoogle Scholar
  5. Beeftink, W.G., and J. Rozema. 1988. The nature and functioning of salt marshes. In Pollution of the North Sea: an assessment, ed. W. Salomons, B.L. Bayne, E.K. Duursma, and U. Förstner, 59–87. Berlin: Springer Berlin Heidelberg.Google Scholar
  6. Bertness, M.D., C. Crain, C. Holdredge, and N. Sala. 2008. Eutrophication and consumer control of New England salt marsh primary productivity. Conservation Biology. 22 (1): 131–139.CrossRefGoogle Scholar
  7. Best, M., A. Massey, and A. Prior. 2007. Developing a saltmarsh classification tool for the European water framework directive. Marine Pollution Bulletin 55 (1-6): 205–214.CrossRefGoogle Scholar
  8. Birk, S., W. Bonne, A. Borja, S. Brucet, A. Courrat, S. Poikane, A. Solimini, W. van de Bund, N. Zampoukas, and D. Hering. 2012. Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the water framework directive. Ecological Indicators 18: 31–41.CrossRefGoogle Scholar
  9. Borcard, D., F. Gillet, and P. Legendre. 2011. Numerical ecology with R. New York: Springer.CrossRefGoogle Scholar
  10. Boudsocq, S., A. Niboyet, J.C. Lata, X. Raynaud, N. Loeuille, J. Mathieu, M. Blouin, L. Abbadie, and S. Barot. 2012. Plant preference for ammonium versus nitrate: a neglected determinant of ecosystem functioning? The American Naturalist 180 (1): 60–69.CrossRefGoogle Scholar
  11. Cargill, S.M., and R.L. Jefferies. 1984. Nutrient limitation of primary production in a sub-Arctic salt marsh. Journal of Applied Ecology 21 (2): 657–668.CrossRefGoogle Scholar
  12. Clarke, P.J. 1985. Nitrogen pools and soil characteristics of a temperate estuarine wetland in eastern Australia. Aquatic Botany 23 (3): 275–290.CrossRefGoogle Scholar
  13. Curtis, T.G.F., and M. Sheehy Skeffington. 1998. The salt marshes of Ireland: an inventory and account of their geographical variation. Biology and Environment: Proceedings of the Royal Irish Academy 98B: 87–104.Google Scholar
  14. Daly, D., M. Archbold, and J. Deakin. 2016. Progress and challenges in managing our catchments effectively. Biology and Environment: Proceedings of the Royal Irish Academy 116B: 157–166.Google Scholar
  15. de Groot, R., L. Brander, S. van der Ploeg, R. Costanza, F. Bernard, L. Braat, M. Christie, N. Crossman, A. Ghermandi, L. Hein, S. Hussain, P. Kumar, A. McVittie, R. Portela, L.C. Rodriguez, P. ten Brink, and P. van Beukering. 2012. Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services 1 (1): 50–61.CrossRefGoogle Scholar
  16. De Laune, R.D., C.N. Reddy, and W.H. Patrick. 1981. Effect of pH and redox potential on concentration of dissolved nutrients in an estuarine sediment. Journal of Environmental Quality 10 (3): 276–279.CrossRefGoogle Scholar
  17. Deegan, L.A., D.S. Johnson, R.S. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490 (7420): 388–392.CrossRefGoogle Scholar
  18. Dentener, F., J. Drevet, J.F. Lamarque, I. Bey, B. Eickhout, A.M. Fiore, D. Hauglustaine, L.W. Horowitz, M. Krol, U.C. Kulshrestha, M. Lawrence, C. Galy-Lacaux, S. Rast, D. Shindell, D. Stevenson, T. Van Noije, C. Atherton, N. Bell, D. Bergman, T. Butler, J. Cofala, B. Collins, R. Doherty, K. Ellingsen, J. Galloway, M. Gauss, V. Montanaro, J.F. Müller, G. Pitari, J. Rodriguez, M. Sanderson, F. Solmon, S. Strahan, M. Schultz, K. Sudo, S. Szopa, and O. Wild. 2006. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochemical Cycles 20 (4).
  19. Devaney, F.M., and P.M. Perrin. 2015. Saltmarsh angiosperm assessment tool for Ireland (SMAATIE). Wexford: Environmental Protection Agency.Google Scholar
  20. Dray, S., G. Blanchet, D. Borcard, S. Clappe, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi, and H.H. Wagner. 2017. Adespatial: multivariate multiscale spatial analysis. R package version 0.0–9. Accessed 03 July 2018.
  21. EC. 2013. The values of the member state monitoring system classifications as a result of the intercalibration exercise and repealing decision 2008/915/EC. Official Journal of the European Union L266: 1–47.Google Scholar
  22. Elser, J.J., M.E.S. Bracken, E.E. Cleland, D.S. Gruner, W.S. Harpole, H. Hillebrand, J.T. Ngai, E.W. Seabloom, J.B. Shurin, and J.E. Smith. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10 (12): 1135–1142.CrossRefGoogle Scholar
  23. EPC. 2000. Water framework directive 2000/60/EC establishing a framework for community action in the field of water policy. Official Journal of the European Communities L327: 1–73.Google Scholar
  24. Falkengren-Grerup, U. 1995. Interspecies differences in the preference of ammonium and nitrate in vascular plants. Oecologia 102 (3): 305–311.CrossRefGoogle Scholar
  25. Fanning, A., M. Craig, P. Webster, C. Bradley, D. Tierney, R. Wilkes, A. Mannix, P. Treacy, F. Kelly, R. Geoghegan, T. Kent, and M. Mageean. 2017. Water quality in Ireland 2010–2015. Wexford: Environmental Protection Agency.Google Scholar
  26. Fox, J., and S. Weisberg. 2011. An {R} companion to applied regression. Thousand Oaks: Sage Publishing.Google Scholar
  27. García, P., E. Zapico, and A. Colubi. 2009. An angiosperm quality index (AQI) for Cantabrian estuaries. Ecological Indicators 9 (5): 856–865.CrossRefGoogle Scholar
  28. Gardner, L.R. 2005. A modeling study of the dynamics of pore water seepage from intertidal marsh sediments. Estuarine, Coastal and Shelf Science 62 (4): 691–698.CrossRefGoogle Scholar
  29. Henry, J., and J. Aherne. 2014. Nitrogen deposition and exceedance of critical loads for nutrient nitrogen in Irish grasslands. Science of the Total Environment 470: 216–223.CrossRefGoogle Scholar
  30. Henry, H.A.L., and R.L. Jefferies. 2003. Interactions in the uptake of amino acids, ammonium and nitrate ions in the Arctic salt-marsh grass, Puccinellia phryganodes. Plant, Cell and Environment 26 (3): 419–428.CrossRefGoogle Scholar
  31. Johnson, D.S., R.S. Warren, L.A. Deegan, and T.J. Mozdzer. 2016. Saltmarsh plant responses to eutrophication. Ecological Applications 26 (8): 2649–2661.CrossRefGoogle Scholar
  32. Kiehl, K., P. Esselink, and P.J. Bakker. 1997. Nutrient limitation and plant species composition in temperate salt marshes. Oecologia 111 (3): 325–330.CrossRefGoogle Scholar
  33. Ligeza, S., and H. Smal. 2003. Accumulation of nutrients in soils affected by perennial colonies of piscivorous birds with reference to biogeochemical cycles of elements. Chemosphere 52 (3): 595–602.CrossRefGoogle Scholar
  34. Maynard, D.G., Y.P. Kalra, and J.A. Crumbaugh. 2008. Nitrate and exchangeable ammonium nitrogen. In Canadian Society for Soil Science: Soil Sampling and Methods of Analysis, ed. M.R. Carter and E.G. Gregorich, vol. 59, 2nd ed., 71–80. Boca Raton: CRC Press.Google Scholar
  35. McCorry, M., and T. Ryle. 2009. Saltmarsh monitoring project 2007–2008. Dublin: National Parks and Wildlife Service.Google Scholar
  36. Milner, A.M., C.L. Fastie, F.S. Chapin, D.R. Engstrom, and L.C. Sharman. 2007. Interactions and linkages among ecosystems during landscape evolution. BioScience 57 (3): 237–247.CrossRefGoogle Scholar
  37. O'Boyle, S., R. Wilkes, G. McDermott, S. Ní Longphuirt, and C. Murray. 2015. Factors affecting the accumulation of phytoplankton biomass in Irish estuaries and nearshore coastal waters: a conceptual model. Estuarine, Coastal and Shelf Science 155: 75–88.CrossRefGoogle Scholar
  38. Perrin, P.M. 2016. Irish vegetation classification: technical progress report no. 2. Waterford: National Biodiversity Data Centre. Accessed 15 June 2018.Google Scholar
  39. R Core Team. 2018. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, version 3.5.0. Accessed 03 July 2018.Google Scholar
  40. Ravenek, J.M., H. Bessler, C. Engels, M. Scherer-Lorenzen, A. Gessler, A. Gockele, E. De Luca, V.M. Temperton, A. Ebeling, C. Roscher, B. Schmid, W.W. Weisser, C. Wirth, H. de Kroon, A. Weigelt, and L. Mommer. 2014. Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123 (12): 1528–1536.CrossRefGoogle Scholar
  41. Rozema, J., P. Leendertse, J. Bakker, and H. Wijnen. 2000. Nitrogen and vegetation dynamics in European salt marshes. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 469–491. Dordrecht: Springer.Google Scholar
  42. Scanlan, C.M., J. Foden, E. Wells, and M.A. Best. 2007. The monitoring of opportunistic macroalgal blooms for the water framework directive. Marine Pollution Bulletin 55 (1-6): 162–171.CrossRefGoogle Scholar
  43. Schoenau, J.J., and I.P. O'Halloran. 2008. Sodium bicarbonate-extractable phosphorus. In Canadian society for soil science: Soil sampling and methods of analysis, ed. M.R. Carter and E.G. Gregorich, vol. 59, 2nd, 89–94. Boca Raton: CRC Press.Google Scholar
  44. Schrama, M., J. Jouta, M.P. Berg, and H. Olff. 2013a. Food web assembly at the landscape scale: using stable isotopes to reveal changes in trophic structure during succession. Ecosystems 16 (4): 627–638.CrossRefGoogle Scholar
  45. Schrama, M., P. Heijning, J.P. Bakker, van H.J. Wijnen, M.P. Berg, and H. Olff. 2013b. Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia 172: 231–243.CrossRefGoogle Scholar
  46. Schrama, M., L.A. van Boheemen, H. Olff, and M.P. Berg. 2015. How the litter-feeding bioturbator Orchestia gammarellus promotes late-successional saltmarsh vegetation. Journal of Ecology 103 (4): 915–924.CrossRefGoogle Scholar
  47. Silliman, B.R., and M.D. Bertness. 2002. A trophic cascade regulates salt marsh primary production. Proceedings of the National Academy of Sciences 99 (16): 10500–10505.CrossRefGoogle Scholar
  48. Smith, V.H., and D.W. Schindler. 2009. Eutrophication science: where do we go from here? Trends in Ecology and Evolution 24 (4): 201–207.CrossRefGoogle Scholar
  49. Tsyro, S., W. Aas, S. Solberg, A. Benedictow, H. Fagerli, and M. Posch. 2017. Status of transboundary air pollution in 2015. In European monitoring and evaluation programme status report 2017: transboundary particulate matter, photo-oxidants, acidifying and eutrophying components, 15–36. Oslo: Norwegian Meteorological Institute.Google Scholar
  50. Valiela, I., and J.M. Teal. 1979. The nitrogen budget of a salt marsh ecosystem. Nature 280 (5724): 652–656.CrossRefGoogle Scholar
  51. Van Wijnen, H.J., and J.P. Bakker. 1999. Nitrogen and phosphorus limitation in a coastal barrier salt marsh: the implications for vegetation succession. Journal of Ecology 87 (2): 265–272.CrossRefGoogle Scholar
  52. Voulvoulis, N., K.D. Arpon, and T. Giakoumis. 2017. The EU water framework directive: from great expectations to problems with implementation. Science of the Total Environment 575: 358–366.CrossRefGoogle Scholar
  53. Walker, N.A., H.A.L. Henry, D.J. Wilson, and R.L. Jefferies. 2003. The dynamics of nitrogen movement in an Arctic salt marsh in response to goose herbivory: a parameterized model with alternate stable states. Journal of Ecology 91 (4): 637–650.CrossRefGoogle Scholar
  54. Wan, A.H.L., R.J. Wilkes, S. Heesch, R. Bermejo, M.P. Johnson, and L. Morrison. 2017. Assessment and characterisation of Ireland’s green tides (Ulva species). PLoS One 12 (1): e0169049.CrossRefGoogle Scholar
  55. Wang, L., and S.A. Macko. 2011. Constrained preferences in nitrogen uptake across plant species and environments. Plant, Cell and Environment 34 (3): 525–534.CrossRefGoogle Scholar
  56. Weis J.S., K.E.A. Segarra, and P. Bernal. 2016. Chapter 49: salt marshes. In The First global integrated marine assessment: world ocean assessment I. United Nations.Google Scholar
  57. Wilkes, R., M. Bennion, N. McQuaid, C. Beer, G. McCullough-Annett, K. Colhoun, R. Inger, and L. Morrison. 2017. Intertidal seagrass in Ireland: pressures, WFD status and an assessment of trace element contamination in intertidal habitats using Zostera noltei. Ecological Indicators 82: 117–130.CrossRefGoogle Scholar
  58. Wong, J.X.W., C. Van Colen, and L. Airoldi. 2015. Nutrient levels modify saltmarsh responses to increased inundation in different soil types. Marine Environmental Research 104: 37–46.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2018

Authors and Affiliations

  1. 1.Centre for the Environment and Botany DepartmentTrinity College Dublin, the University of DublinDublinIreland
  2. 2.Botanical, Environmental and Conservation ConsultantsDublinIreland
  3. 3.Environmental Protection AgencyCo. MayoIreland

Personalised recommendations