Advertisement

Estuaries and Coasts

, Volume 41, Issue 5, pp 1282–1296 | Cite as

Short-Term Spatial and Temporal Carbonate Chemistry Variability in Two Contrasting Seagrass Meadows: Implications for pH Buffering Capacities

  • Tyler CyronakEmail author
  • Andreas J. Andersson
  • Sydney D’Angelo
  • Philip Bresnahan
  • Charles Davidson
  • Alyssa Griffin
  • Theodor Kindeberg
  • Jimmy Pennise
  • Yuichiro Takeshita
  • Margot White
Article

Abstract

It has been hypothesized that highly productive coastal ecosystems, such as seagrass meadows, could lead to the establishment of ocean acidification (OA) refugia, or areas of elevated pH and aragonite saturation state (Ωa) compared to source seawater. However, seagrass ecosystems experience extreme variability in carbonate chemistry across short temporal and small spatial scales, which could impact the pH buffering capacity of these potential refugia. Herein, short-term (hourly to diel) and small-scale (across 0.01–0.14 km2) spatiotemporal carbonate chemistry variability was assessed within two seagrass meadows in order to determine their short-term potential to elevate seawater pH relative to source seawater. Two locations at similar latitudes were chosen in order to compare systems dominated by coarse calcium carbonate (Bailey’s Bay, Bermuda) and muddy silicate (Mission Bay, CA, USA) sediments. In both systems, spatial variability of pH across the seagrass meadow at any given time was often greater than diel variability (e.g., the average range over 24 h) at any one site, with greater spatial variability occurring at low tide in Mission Bay. Mission Bay (spatial ΔpH = 0.08 ± 0.08; diel ΔpH = 0.12 ± 0.01; mean ± SD) had a greater average range in both temporal and spatial seawater chemistry than Bailey’s Bay (spatial ΔpH = 0.02 ± 0.01; diel ΔpH = 0.03 ± 0.00; mean ± SD). These differences were most likely due to a combination of slower currents, a larger tidal range, and more favorable weather conditions for photosynthesis (e.g., sunny with no rain) in Mission Bay. In both systems, there was a substantial amount of time (usually at night) when seawater pH within the seagrass beds was lower relative to the source seawater. Future studies aimed at assessing the potential of seagrass ecosystems to act as OA refugia for marine organisms need to account for the small-scale, high-frequency carbonate chemistry variability in both space and time, as this variability will impact where and when OA will be buffered or intensified.

Keywords

Ocean acidification Coastal ecosystems Buffering Seagrass Carbonate chemistry SeapHOx 

Notes

Acknowledgements

The authors would like to thank the Ocean Discovery Institute (ODI) and over 30 middle school students from the City Heights area in San Diego who helped collect data in Mission Bay. We would also like to thank the staff of the Bermuda Institute of Ocean Sciences (BIOS) for their support during the Bailey’s Bay study. This research was part of NSF grant OCE 12-55042 (AJA).

References

  1. Andersson, A.J., K.L. Yeakel, N.R. Bates, and S.J. de Putron. 2014. Partial offsets in ocean acidification from changing coral reef biogeochemistry. Nature Climate Change 4 (1): 56–61.CrossRefGoogle Scholar
  2. Anthony, K., J.A. Kleypas, and J.P. Gattuso. 2011. Coral reefs modify their seawater carbon chemistry–implications for impacts of ocean acidification. Global Change Biology 17 (12): 3655–3666.CrossRefGoogle Scholar
  3. Bates, N.R., L. Samuels, and L. Merlivat. 2001. Biogeochemical and physical factors influencing seawater fCO2 and air-sea CO2 exchange on the Bermuda coral reef. Limnology and Oceanography 46 (4): 833–846.CrossRefGoogle Scholar
  4. Bates, N., Y. Astor, M. Church, K. Currie, J. Dore, M. Gonaález-Dávila, L. Lorenzoni, F. Muller-Karger, J. Olafsson, and M. Santa-Casiano. 2014. A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification. Oceanography 27 (1): 126–141.CrossRefGoogle Scholar
  5. Bresnahan, P.J., T.R. Martz, Y. Takeshita, K.S. Johnson, and M. LaShomb. 2014. Best practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods in Oceanography 9: 44–60.CrossRefGoogle Scholar
  6. Bresnahan, P.J., T. Wirth, T.R. Martz, A.J. Andersson, T. Cyronak, S. D’Angelo, J. Pennise, W.K. Melville, L. Lenain, and N. Statom. 2016. A sensor package for mapping pH and oxygen from mobile platforms. Methods in Oceanography 17: 1–13.CrossRefGoogle Scholar
  7. Burdige, D.J., and R.C. Zimmerman. 2002. Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnology and Oceanography 47 (6): 1751–1763.CrossRefGoogle Scholar
  8. Burdige, D.J., R.C. Zimmerman, and X. Hu. 2008. Rates of carbonate dissolution in permeable sediments estimated from pore-water profiles: The role of sea grasses. Limnology and Oceanography 53 (2): 549–565.CrossRefGoogle Scholar
  9. Cai, W.J., Y. Wang, and R.E. Hodson. 1998. Acid-base properties of dissolved organic matter in the estuarine waters of Georgia, USA. Geochimica et Cosmochimica Acta 62 (3): 473–483.CrossRefGoogle Scholar
  10. Cai, W.-J., X. Hu, W.-J. Huang, M.C. Murrell, J.C. Lehrter, S.E. Lohrenz, W.-C. Chou, W. Zhai, J.T. Hollibaugh, and Y. Wang. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4 (11): 766–770.CrossRefGoogle Scholar
  11. Camp, E.F., D.J. Smith, C. Evenhuis, I. Enochs, D.P. Manzello, S. Woodcock, and D.J. Suggett. 2016a. Acclimatization to high-variance habitats does not enhance physiological tolerance of two key Caribbean corals to future temperature and pH. Proceedings of the Royal Society of London B: Biological Sciences 283 (1831): 20160442.CrossRefGoogle Scholar
  12. Camp, E.F., D.J. Suggett, G. Gendron, J. Jompa, C. Manfrino, and D.J. Smith. 2016b. Mangrove and seagrass beds provide different biogeochemical services for corals threatened by climate change. Frontiers in Marine Science 3: 52.CrossRefGoogle Scholar
  13. Challener, R.C., L.L. Robbins, and J.B. McClintock. 2016. Variability of the carbonate chemistry in a shallow, seagrass-dominated ecosystem: implications for ocean acidification experiments. Marine and Freshwater Research 67 (2): 163–172.CrossRefGoogle Scholar
  14. Clark, H.R., and C.J. Gobler. 2016. Diurnal fluctuations in CO2 and dissolved oxygen concentrations do not provide a refuge from hypoxia and acidification for early-life-stage bivalves. Marine Ecology Progress Series 558: 1–14.CrossRefGoogle Scholar
  15. Comeau, S., P.J. Edmunds, N.B. Spindel, and R.C. Carpenter. 2014. Diel pCO2 oscillations modulate the response of the coral Acropora hyacinthus to ocean acidification. Marine Ecology Progress Series 501: 99–111.CrossRefGoogle Scholar
  16. Cyronak, T., I.R. Santos, D.V. Erler, D.T. Maher, and B.D. Eyre. 2014. Drivers of pCO2 variability in two contrasting coral reef lagoons: The influence of submarine groundwater discharge. Global Biogeochemical Cycles 28 (4): 398–414.CrossRefGoogle Scholar
  17. Davidson, C. 2015. Spatial and temporal variability of coastal carbonate chemistry in the Southern California region. La Jolla: Scripps Institution of Oceanography, University of California San Diego.Google Scholar
  18. Dickson, A., and F. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers 34 (10): 1733–1743.CrossRefGoogle Scholar
  19. Dickson, A.G., C.L. Sabine, and J.R. Christian. 2007. Guide to best practices for ocean CO2 measurements. Sidney, British Columbia: North Pacific Marine Science Organization.Google Scholar
  20. Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169–192.CrossRefGoogle Scholar
  21. Duarte, C.M. 1989. Temporal biomass variability and production/biomass relationships of seagrass communities. Marine Ecology Progress Series 51 (3): 269–276.CrossRefGoogle Scholar
  22. Duarte, C.M., J.J. Middelburg, and N. Caraco. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2 (1): 1–8.CrossRefGoogle Scholar
  23. Duarte, C.M., N. Marbà, E. Gacia, J.W. Fourqurean, J. Beggins, C. Barrón, and E.T. Apostolaki. 2010. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles 24 (4): GB4032.CrossRefGoogle Scholar
  24. Duarte, C.M., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J.A. Trotter, and M. McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36: 221–236.CrossRefGoogle Scholar
  25. Dufault, A.M., V.R. Cumbo, T.-Y. Fan, and P.J. Edmunds. 2012. Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proceedings of the Royal Society of London B: Biological Sciences 279 (1740): 2951–2958.CrossRefGoogle Scholar
  26. Fabricius, K.E., C. Langdon, S. Uthicke, C. Humphrey, S. Noonan, G. De'ath, R. Okazaki, N. Muehllehner, M.S. Glas, and J.M. Lough. 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1 (3): 165–169.CrossRefGoogle Scholar
  27. Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marba, M. Holmer, M.A. Mateo, E.T. Apostolaki, et al. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geosci 5 (7): 505–509.CrossRefGoogle Scholar
  28. Gobler, C.J., H.R. Clark, A.W. Griffith, and M.W. Lusty. 2017. Diurnal Fluctuations in Acidification and Hypoxia Reduce Growth and Survival of Larval and Juvenile Bay Scallops (Argopecten irradians) and Hard Clams (Mercenaria mercenaria). Frontiers in Marine Science 3: 282.CrossRefGoogle Scholar
  29. Hall-Spencer, J.M., R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S.M. Turner, S.J. Rowley, D. Tedesco, and M.C. Buia. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454 (7200): 96–99.CrossRefGoogle Scholar
  30. Hendriks, I.E., Y.S. Olsen, L. Ramajo, L. Basso, A. Steckbauer, T.S. Moore, J. Howard, and C.M. Duarte. 2014. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11 (2): 333–346.CrossRefGoogle Scholar
  31. Holzer, K.K., and K.J. McGlathery. 2016. Cultivation grazing response in seagrass may depend on phosphorus availability. Marine Biology 163 (4): 1–11.CrossRefGoogle Scholar
  32. Johnson, M.R., S.L. Williams, C.H. Lieberman, and A. Solbak. 2003. Changes in the Abundance of the Seagrasses Zostera marina L. (Eelgrass) and Ruppia maritima L. (Widgeongrass) in San Diego, California, Following an El Nino Event. Estuaries 26 (1): 106–115.CrossRefGoogle Scholar
  33. Jury, C., F. Thomas, M. Atkinson, and R. Toonen. 2013. Buffer capacity, ecosystem feedbacks, and seawater chemistry under global change. Water 5 (3): 1303–1325.CrossRefGoogle Scholar
  34. Keppel, A.G., D.L. Breitburg, and R.B. Burrell. 2016. Effects of Co-Varying Diel-Cycling Hypoxia and pH on Growth in the Juvenile Eastern Oyster, Crassostrea virginica. PLoS ONE 11 (8): e0161088.CrossRefGoogle Scholar
  35. Kleypas, J.A., K.R.N. Anthony, and J.-P. Gattuso. 2011. Coral reefs modify their seawater carbon chemistry – Case study from a barrier reef (Moorea, French Polynesia). Global Change Biology 17 (12): 3667–3678.CrossRefGoogle Scholar
  36. Koch, M., G. Bowes, C. Ross, and X.-H. Zhang. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology 19 (1): 103–132.CrossRefGoogle Scholar
  37. Kroeker, K.J., R.L. Kordas, R.N. Crim, and G.G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13 (11): 1419–1434.CrossRefGoogle Scholar
  38. Krumins, V., M. Gehlen, S. Arndt, P. Van Cappellen, and P. Regnier. 2013. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change. Biogeosciences 10 (1): 371–398.CrossRefGoogle Scholar
  39. Ku, T.C.W., L.M. Walter, M.L. Coleman, R.E. Blake, and A.M. Martini. 1999. Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, U.S.A. Geochimica et Cosmochimica Acta 63 (17): 2529–2546.CrossRefGoogle Scholar
  40. Largier, J.L., J.T. Hollibaugh, and S.V. Smith. 1997. Seasonally Hypersaline Estuaries in Mediterranean-climate Regions. Estuarine, Coastal and Shelf Science 45 (6): 789–797.CrossRefGoogle Scholar
  41. Manzello, D.P., I.C. Enochs, N. Melo, D.K. Gledhill, and E.M. Johns. 2012. Ocean acidification refugia of the Florida reef tract. PLoS ONE 7 (7): e41715.CrossRefGoogle Scholar
  42. Martz, T.R., J.G. Connery, and K.S. Johnson. 2010. Testing the Honeywell Durafet® for seawater pH applications. Limnology and Oceanography: Methods 8 (5): 172–184.Google Scholar
  43. Mateo, M.A., J. Cebrián, K. Dunton, and T. Mutchler. 2006. Carbon flux in seagrass ecosystems. Seagrasses: biology, ecology and conservation, 159–192. Dordrecht: Springer.Google Scholar
  44. McLeod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Björk, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger, and B.R. Silliman. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9 (10): 552–560.CrossRefGoogle Scholar
  45. McLeod, E., K.R.N. Anthony, A. Andersson, R. Beeden, Y. Golbuu, J. Kleypas, K. Kroeker, et al. 2013. Preparing to manage coral reefs for ocean acidification: lessons from coral bleaching. Frontiers in Ecology and the Environment 11 (1): 20–27.CrossRefGoogle Scholar
  46. Mehrbach, C., C. Culberson, J. Hawley, and R. Pytkowicz. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18 (6): 897–907.CrossRefGoogle Scholar
  47. Millero, F.J., W.T. Hiscock, F. Huang, M. Roche, and J.Z. Zhang. 2001. Seasonal variation of the carbonate system in Florida Bay. Bulletin of Marine Science 68 (1): 101–123.Google Scholar
  48. Mongin, M., M.E. Baird, S. Hadley, and A. Lenton. 2016. Optimising reef-scale CO2 removal by seaweed to buffer ocean acidification. Environmental Research Letters 11 (3): 034023.CrossRefGoogle Scholar
  49. Nellemann, C., and E. Corcoran. 2009. Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment. Norway: United Nations Environment Programme, GRID-Arendal.Google Scholar
  50. Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, and F. Joos. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437 (7059): 681–686.CrossRefGoogle Scholar
  51. Ow, Y.X., C.J. Collier, and S. Uthicke. 2015. Responses of three tropical seagrass species to CO2 enrichment. Marine Biology 162 (5): 1005–1017.CrossRefGoogle Scholar
  52. Palacios, S.L., and R.C. Zimmerman. 2007. Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Marine Ecology Progress Series 344: 1–13.CrossRefGoogle Scholar
  53. Price, N.N., T.R. Martz, R.E. Brainard, and J.E. Smith. 2012. Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs. PLoS ONE 7 (8): e43843.CrossRefGoogle Scholar
  54. Rasheed, M., C. Wild, U. Franke, and M. Huettel. 2004. Benthic photosynthesis and oxygen consumption in permeable carbonate sediments at Heron Island, Great Barrier Reef, Australia. Estuarine, Coastal and Shelf Science 59 (1): 139–150.CrossRefGoogle Scholar
  55. Rivest, E.B., S. Comeau, and C.E. Cornwall. 2017. The Role of Natural Variability in Shaping the Response of Coral Reef Organisms to Climate Change. Current Climate Change Reports 3 (4): 271–281.CrossRefGoogle Scholar
  56. Santos, I.R., B.D. Eyre, and M. Huettel. 2012. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuarine, Coastal and Shelf Science 98: 1–15.CrossRefGoogle Scholar
  57. Semesi, I.S., S. Beer, and M. Björk. 2009. Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series 382: 41–47.CrossRefGoogle Scholar
  58. Shaw, E.C., B.I. McNeil, and B. Tilbrook. 2012. Impacts of ocean acidification in naturally variable coral reef flat ecosystems. Journal of Geophysical Research 117: C03038.CrossRefGoogle Scholar
  59. Shaw, E.C., B.I. McNeil, B. Tilbrook, R. Matear, and M.L. Bates. 2013. Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions. Global Change Biology 19 (5): 1632–1641.CrossRefGoogle Scholar
  60. Sippo, J.Z., D.T. Maher, D.R. Tait, C. Holloway, and I.R. Santos. 2016. Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Global Biogeochemical Cycles 30: 753–766.CrossRefGoogle Scholar
  61. Takeshita, Y., W. McGillis, E.M. Briggs, A.L. Carter, E.M. Donham, T.R. Martz, N.N. Price, and J.E. Smith. 2016. Assessment of net community production and calcification of a coral reef using a boundary layer approach. Journal of Geophysical Research: Oceans. 121: 5655–5671.Google Scholar
  62. Turk, D., K. Yates, M. Vega-Rodriguez, G. Toro-Farmer, C. L'Esperance, N. Melo, D. Ramsewak, et al. 2015. Community metabolism in shallow coral reef and seagrass ecosystems, Lower Florida Keys. Marine Ecology Progress Series 538: 35–52.CrossRefGoogle Scholar
  63. Unsworth, R.K.F., C.J. Collier, G.M. Henderson, and L.J. McKenzie. 2012. Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification. Environmental Research Letters 7 (2): 024026.CrossRefGoogle Scholar
  64. Van Heuven, S., D. Pierrot, J. Rae, E. Lewis, and D. Wallace. 2011. CO2SYS v 1.1, MATLAB program developed for CO2 system calculations. ORNL/CDIAC-105b, Carbon Dioxide Inf. Anal. Center, Oak Ridge Natl. Lab. US DoE, doi 10.Google Scholar
  65. Wild, C., M.S. Naumann, A. Haas, U. Struck, F.W. Mayer, M.Y. Rasheed, and M. Huettel. 2009. Coral sand O2 uptake and pelagic–benthic coupling in a subtropical fringing reef, Aqaba, Red Sea. Aquatic Biology 6: 133–142.CrossRefGoogle Scholar
  66. Zimmerman, R.C., D.G. Kohrs, D.L. Steller, and R.S. Alberte. 1997. Impacts of CO2 Enrichment on Productivity and Light Requirements of Eelgrass. Plant Physiology 115 (2): 599–607.CrossRefGoogle Scholar
  67. Zimmerman, R.C., V.J. Hill, and C.L. Gallegos. 2015. Predicting effects of ocean warming, acidification, and water quality on Chesapeake region eelgrass. Limnology and Oceanography 60 (5): 1781–1804.CrossRefGoogle Scholar
  68. Zimmerman, R.C., V.J. Hill, M. Jinuntuya, B. Celebi, D. Ruble, M. Smith, T. Cedeno, and W.M. Swingle. 2017. Experimental impacts of climate warming and ocean carbonation on eelgrass Zostera marina. Marine Ecology Progress Series 566: 1–15.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2018

Authors and Affiliations

  • Tyler Cyronak
    • 1
    Email author
  • Andreas J. Andersson
    • 1
  • Sydney D’Angelo
    • 1
  • Philip Bresnahan
    • 1
  • Charles Davidson
    • 1
  • Alyssa Griffin
    • 1
  • Theodor Kindeberg
    • 1
  • Jimmy Pennise
    • 2
  • Yuichiro Takeshita
    • 3
  • Margot White
    • 1
  1. 1.Scripps Institution of OceanographyUC San DiegoLa JollaUSA
  2. 2.Ocean Discovery InstituteSan DiegoUSA
  3. 3.Monterey Bay Aquarium Research InstituteMoss LandingUSA

Personalised recommendations