Advertisement

Estuaries and Coasts

, Volume 41, Issue 4, pp 1050–1068 | Cite as

Temporal Changes in Seawater Carbonate Chemistry and Carbon Export from a Southern California Estuary

  • May-Linn PaulsenEmail author
  • Andreas J. Andersson
  • Lihini Aluwihare
  • Tyler Cyronak
  • Sydney D’Angelo
  • Charlie Davidson
  • Hany Elwany
  • Sarah N. Giddings
  • Heather N. Page
  • Magali Porrachia
  • Stephen Schroeter
Article

Abstract

Estuaries are important subcomponents of the coastal ocean, but knowledge about the temporal and spatial variability of their carbonate chemistry, as well as their contribution to coastal and global carbon fluxes, are limited. In the present study, we measured the temporal and spatial variability of biogeochemical parameters in a saltmarsh estuary in Southern California, the San Dieguito Lagoon (SDL). We also estimated the flux of dissolved inorganic carbon (DIC) and total organic carbon (TOC) to the adjacent coastal ocean over diel and seasonal timescales. The combined net flux of DIC and TOC (FDIC + TOC) to the ocean during outgoing tides ranged from − 1.8±0.5 × 103 to 9.5±0.7 × 103 mol C h−1 during baseline conditions. Based on these fluxes, a rough estimate of the net annual export of DIC and TOC totaled 10±4 × 106 mol C year−1. Following a major rain event (36 mm rain in 3 days), FDIC + TOC increased and reached values as high as 29.0 ± 0.7 × 103 mol C h−1. Assuming a hypothetical scenario of three similar storm events in a year, our annual net flux estimate more than doubled to 25 ± 4 × 106 mol C year−1. These findings highlight the importance of assessing coastal carbon fluxes on different timescales and incorporating event scale variations in these assessments. Furthermore, for most of the observations elevated levels of total alkalinity (TA) and pH were observed at the estuary mouth relative to the coastal ocean. This suggests that SDL partly buffers against acidification of adjacent coastal surface waters, although the spatial extent of this buffering is likely small.

Keywords

Carbon export Carbon fluxes Estuary Total alkalinity Storm 

Notes

Acknowledgements

The authors would like to acknowledge support from NSF (OCE 12-55042; AJA) and Norsk Vannforening (Norwegian Water Association; MLP) and everyone that helped with sample collection including Alyssa Finlay, Angel Ruacho, Camille Grimaldi, Evan Betzler, Madeleine Harvey, Margot White, and Michael Fong. The authors would like to thank Sara Rivera and Brandon Stephens for help with TOC sample analysis. The authors would also like to acknowledge the San Dieguito Joint River Park Authorities, Park Rangers and the San Diego Coast Keepers for allowing this study to be done. Finally, we would like to thank Kyle Mandla, Madeleine Harvey, Theo Kindeberg and Travis Courtney for helpful feedback on the manuscript. Comments by two anonymous reviewers also significantly improved an earlier version of this manuscript.

Supplementary material

12237_2017_345_MOESM1_ESM.pdf (3.6 mb)
ESM 1 (PDF 3705 kb)

References

  1. Abril, G., and M. Frankignoulle. 2001. Nitrogen-alkalinity interactions in the highly polluted scheldt basin (Belgium). Water Research 35 (3): 844–850.  https://doi.org/10.1016/S0043-1354(00)00310-9.CrossRefGoogle Scholar
  2. Abril, G., M.V. Commarieu, D. Maro, M. Fontugne, F. Guerin, and H. Etcheber. 2004. A massive dissolved inorganic carbon release at spring tide in a highly turbid estuary. Geophysical Research Letters 31 (9): L09316.  https://doi.org/10.1029/2004GL019714.
  3. Aitkenhead-Peterson, J.A., J.E. Alexander, and T.A. Clair. 2005. Dissolved organic carbon and dissolved organic nitrogen export from forested watersheds in Nova Scotia: identifying controlling factors. Global Biogeochemical Cycles 19 (4): GB4016.  https://doi.org/10.1029/2004GB002438.
  4. Alin, S.R., R.A. Feely, A.G. Dickson, J.M. Hernández-Ayón, L.W. Juranek, M.D. Ohman, and R. Goericke. 2012. Robust empirical relationships for estimating the carbonate system in the southern California current system and application to CalCOFI hydrographic cruise data (2005-2011). Journal of Geophysical Research: Oceans 117: n/a, C5.  https://doi.org/10.1029/2011JC007511.
  5. Amann, T., A. Weiss, and J. Hartmann. 2014. Inorganic carbon fluxes in the inner Elbe estuary, Germany. Estuaries and Coasts 38: 192–210.CrossRefGoogle Scholar
  6. Andersson, A.J., and F.T. Mackenzie. 2004. Shallow-water oceans: a source or sink of atmospheric CO2? Frontiers in Ecology and the Environment 2: 348–353.Google Scholar
  7. Andersson, A.J., F.T. Mackenzie, and A. Lerman. 2005. Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. American Journal of Science 305 (9): 875–918.  https://doi.org/10.2475/ajs.305.9.875.CrossRefGoogle Scholar
  8. Armstrong, F.A.J., C.R. Stearns, and J.D.H. Strickland. 1967. The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer(R) and associated equipment. Deep Sea Research 14: 381–389.Google Scholar
  9. Balls, P.W. 1994. Nutrient inputs to estuaries from nine Scottish east coast rivers; influence of estuarine processes on inputs to the North Sea. Estuarine, Coastal and Shelf Science 39 (4): 329–352.  https://doi.org/10.1006/ecss.1994.1068.CrossRefGoogle Scholar
  10. Bates, N., Y. Astor, M. Church, K. Currie, J. Dore, M. Gonaález-Dávila, L. Lorenzoni, F. Muller-Karger, J. Olafsson, and M. Santa-Casiano. 2014. A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27 (1): 126–141.  https://doi.org/10.5670/oceanog.2014.16.CrossRefGoogle Scholar
  11. Bauer, J.E., W.J. Cai, P.A. Raymond, T.S. Bianchi, C.S. Hopkinson, and P.A. Regnier. 2013. The changing carbon cycle of the coastal ocean. Nature 504 (7478): 61–70.  https://doi.org/10.1038/nature12857.CrossRefGoogle Scholar
  12. Baumann, H., R.B. Wallace, T. Tagliaferri, and C.J. Gobler. 2014. Large natural pH, CO2 and O2 fluctuations in a temperate tidal salt marsh on diel, seasonal, and interannual time scales. Estuaries and Coasts 38: 220–231.CrossRefGoogle Scholar
  13. Beller, E.E., S.A. Baumgarten, R.M. Grossinger, T.R. Longcore, E.D. Stein, S.J. Dark, and S.R. Dusterhoff. 2014. Northern San Diego county lagoons historical ecology investigation: regional patterns, local diversity, and landscape trajectories. Richmond: San Francisco Estuary Institute.Google Scholar
  14. Bernhardt, H., and A. Wilhelms. 1967. The continuous determination of low level iron, soluble phosphate and total phosphate with the autoanalyzer. Technicon Symposium 1: 385–389.Google Scholar
  15. Bianchi, T.S., F. Garcia-Tigreros, S.A. Yvon-Lewis, M. Shields, H.J. Mills, D. Butman, C. Osburn, P. Raymond, G.C. Shank, S.F. DiMarco, N. Walker, B.K. Reese, R. Mullins-Perry, A. Quigg, G.R. Aiken, and E.L. Grossman. 2013. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event. Geophysical Research Letters 40 (1): 116–122.  https://doi.org/10.1029/2012GL054145.CrossRefGoogle Scholar
  16. Boehme, S.E., C.L. Sabine, and C.E. Reimers. 1998. CO2 fluxes from a coastal transect: a time-series approach. Marine Chemistry 63 (1-2): 49–67.  https://doi.org/10.1016/S0304-4203(98)00050-4.CrossRefGoogle Scholar
  17. Boesch, D.F., and R.E. Turner. 1984. Dependence of fishery species on salt marshes: the role of food and refuge. Estuaries 7 (4): 460–468.  https://doi.org/10.2307/1351627.CrossRefGoogle Scholar
  18. Borges, A.V. 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28 (1): 3–27.  https://doi.org/10.1007/BF02732750.CrossRefGoogle Scholar
  19. Borges, A.V., and M. Frankignoulle. 2002. Distribution and air-water exchange of carbon dioxide in the Scheldt plume off the Belgian coast. Biogeochemistry 59 (1/2): 41–67.  https://doi.org/10.1023/A:1015517428985.CrossRefGoogle Scholar
  20. Borges, A.V., B. Delille, L.-S. Schiettecatte, F. Gazeau, G. Abril, and M. Frankignoulle. 2004. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnology and Oceanography 49 (5): 1630–1641.  https://doi.org/10.4319/lo.2004.49.5.1630.CrossRefGoogle Scholar
  21. Bouillon, S., F. Dehairs, B. Velimirov, G. Abril, and A.V. Borges. 2007. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya). Journal of Geophysical Research 112 (G2): G02018.  https://doi.org/10.1029/2006JG000325.
  22. Burdige, D. 2011. 5.09 estuarine and coastal sediments–coupled biogeochemical cycling. Treatise on Estuarine and Coastal Science 5: 279–308.CrossRefGoogle Scholar
  23. Caffrey, J.M., T.P. Chapin, H.W. Jannasch, and J.C. Haskins. 2007. High nutrient pulses, tidal mixing and biological response in a small California estuary: variability in nutrient concentrations from decadal to hourly time scales. Estuarine, Coastal and Shelf Science 71 (3-4): 368–380.  https://doi.org/10.1016/j.ecss.2006.08.015.CrossRefGoogle Scholar
  24. Cai, W.J. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science 3 (1): 123–145.  https://doi.org/10.1146/annurev-marine-120709-142723.CrossRefGoogle Scholar
  25. Cai, W.-J., and Y. Wang. 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography 43 (4): 657–668.  https://doi.org/10.4319/lo.1998.43.4.0657.CrossRefGoogle Scholar
  26. Cai, W.-J., W.J. Wiebe, Y. Wang, and J.E. Sheldon. 2000. Intertidal narsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla river-estuarine complex in the southeastern U.S. Limnology and Oceanography 45 (8): 1743–1752.  https://doi.org/10.4319/lo.2000.45.8.1743.CrossRefGoogle Scholar
  27. Cai, W.-J., A.W. Wang, and Y. Wang. 2003a. The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the land-sea interface and the ocean. Geophysical Research Letters 30 (16): 1849.  https://doi.org/10.1029/2003GL017633.
  28. Cai, W.-J., Y. Wang, J. Krest, and W.S. Moore. 2003b. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochimica et Cosmochimica Acta 67 (4): 631–639.  https://doi.org/10.1016/S0016-7037(02)01167-5.CrossRefGoogle Scholar
  29. Cai, W., C.A. Chen, and A. Borges. 2013. Carbon dioxide dynamics and fluxes in coastal waters influenced by river plumes. In Biogeochemical dynamics at Major river-coastal interfaces: linkages with global change, ed. T.S. Bianchi, M.A. Allison, and W.-J. Cai, 155–172. New York: Cambridge University Press.  https://doi.org/10.1017/CBO9781139136853.010.CrossRefGoogle Scholar
  30. Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425 (6956): 365.  https://doi.org/10.1038/425365a.CrossRefGoogle Scholar
  31. Carvalho, R., and P. Duarte. 2013. Carbon fluxes in a coastal area of northern Portugal. Limnetica 32: 229–244.Google Scholar
  32. Cayan, D.R., P.D. Bromirski, K. Hayhoe, M. Tyree, M.D. Dettinger, and R.E. Flick. 2008. Climate change projections of sea level extremes along the California coast. Climatic Change 87 (S1): 57–73.  https://doi.org/10.1007/s10584-007-9376-7.CrossRefGoogle Scholar
  33. Chen, C.-T.A., and A.V. Borges. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography 56 (8-10): 578–590.  https://doi.org/10.1016/j.dsr2.2009.01.001.CrossRefGoogle Scholar
  34. Chen, C.-T.A., and S.-L. Wang. 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Geophysical Research: Oceans 104 (C9): 20675–20686.  https://doi.org/10.1029/1999JC900055.CrossRefGoogle Scholar
  35. Chen, C.T.A., T.H. Huang, Y.C. Chen, Y. Bai, X. He, and Y. Kang. 2013. Air–sea exchanges of CO2 in the world's coastal seas. Biogeosciences 10 (10): 6509–6544.  https://doi.org/10.5194/bg-10-6509-2013.CrossRefGoogle Scholar
  36. Cifuentes, L.A., L.E. Schemel, and J.H. Sharp. 1990. Qualitative and numerical analyses of the effects of river inflow variations on mixing diagrams in estuaries. Estuaries, Coastal and Shelf Science 30 (4): 411–427.  https://doi.org/10.1016/0272-7714(90)90006-D.CrossRefGoogle Scholar
  37. Coastal Environments. 2004. San Dieguito lagoon inlet dynamics and maintenance. La Jolla: Coastal Environments.Google Scholar
  38. Cyronak, T., I.R. Santos, D.V. Erler, and B.D. Eyre. 2013. Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands). Biogeosciences 10 (4): 2467–2480.  https://doi.org/10.5194/bg-10-2467-2013.CrossRefGoogle Scholar
  39. Dahl, T.E. 2011. Status and trends of wetlands in the conterminous United States 2004 to 2009., ed. U.S. Department of the Interior and Fish and Wildlife Services, 108. Washington, D. C.Google Scholar
  40. Dahm, C.N., S.V. Gregory, and P.K. Park. 1981. Organic carbon transport in the Columbia River. Estuarine, Coastal and Shelf Science 83: 645–658.CrossRefGoogle Scholar
  41. Das, A., D. Justić, and E. Swenson. 2010. Modeling estuarine-shelf exchanges in a deltaic estuary: Implications for coastal carbon budgets and hypoxia. Ecological Modelling 221 (7): 978–985.  https://doi.org/10.1016/j.ecolmodel.2009.01.023.CrossRefGoogle Scholar
  42. de Bettencourt, A.M., L.S. Quaresma, and M.J. Lança. 2007. The issue of outwelling in the Guadiana River estuary (Portugal): some findings and research suggestions in the context of recent evidence. Hydrobiologia 587 (1): 157–168.  https://doi.org/10.1007/s10750-007-0674-x.CrossRefGoogle Scholar
  43. de Jonge, V.N., M. Elliott, and E. Orive. 2002. Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiologia 475 (476): 1–19.CrossRefGoogle Scholar
  44. de la Paz, M., A. Gómez-Parra, and J. Forja. 2007. Inorganic carbon dynamic and air–water CO2 exchange in the Guadalquivir estuary (SW Iberian Peninsula). Journal of Marine Systems 68 (1-2): 265–277.  https://doi.org/10.1016/j.jmarsys.2006.11.011.CrossRefGoogle Scholar
  45. de la Paz, M., A. Gómez-Parra, and J. Forja. 2008. Tidal-to-seasonal variability in the parameters of the carbonate system in a shallow tidal creek influenced by anthropogenic inputs, Rio San Pedro (SW Iberian Peninsula). Continental Shelf Research 28 (10-11): 1394–1404.  https://doi.org/10.1016/j.csr.2008.04.002.CrossRefGoogle Scholar
  46. Delgadillo-Hinojosa, F., A. Zirino, O. Holm-Hansen, J.M. Hernández-Ayón, T.J. Boyd, B. Chadwick, and I. Rivera-Duarte. 2008. Dissolved nutrient balance and net ecosystem metabolism in a Mediterranean-climate coastal lagoon: San Diego Bay. Estuarine, Coastal and Shelf Science 76 (3): 594–607.  https://doi.org/10.1016/j.ecss.2007.07.032.CrossRefGoogle Scholar
  47. Denny, P. 1994. Biodiversity and wetlands. Wetlands Ecology and Management 3: 55–61.CrossRefGoogle Scholar
  48. Dickson, A.G. 1990. Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. Journal of Chemical Thermodynamics 22 (2): 113–127.  https://doi.org/10.1016/0021-9614(90)90074-Z.CrossRefGoogle Scholar
  49. Dickson, A.G., J.D. Afghan, and G.C. Anderson. 2003. Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Marine Chemistry 80 (2-3): 185–197.  https://doi.org/10.1016/S0304-4203(02)00133-0.CrossRefGoogle Scholar
  50. Dickson, A.G., C.L. Sabine, and J.R. Christian. 2007. Guide to best practices for ocean CO 2 measurements. PICES Special Publication (Vol. 3, pp. 191). Sidney: North Pacific Marine Science Organization.Google Scholar
  51. Dittmar, T., N. Hertkorn, G. Kattner, and R.J. Lara. 2006. Mangroves, a major source of dissolved organic carbon to the oceans. Global Biogeochemical Cycles 20: GB1012.  https://doi.org/10.1029/2005GB002570.
  52. Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1 (1): 169–192.  https://doi.org/10.1146/annurev.marine.010908.163834.CrossRefGoogle Scholar
  53. Dong, L.F., M.N. Sobey, C.J. Smith, I. Rusmana, W. Phillips, A. Stott, A.M. Osborn, and D.B. Nedwell. 2011. Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries. Limnology and Oceanography 56 (1): 279–291.  https://doi.org/10.4319/lo.2011.56.1.0279.CrossRefGoogle Scholar
  54. Duarte, C.M., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J.A. Trotter, and M. McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36 (2): 221–236.  https://doi.org/10.1007/s12237-013-9594-3.CrossRefGoogle Scholar
  55. Duarte, B., J.M. Valentim, J.M. Dias, H. Silva, J.C. Marques, and I. Caçador. 2014. Modelling sea level rise (SLR) impacts on salt marsh detrital outwelling C and N exports from an estuarine coastal lagoon to the ocean (Ria de Aveiro, Portugal). Ecological Modelling 289: 36–44.  https://doi.org/10.1016/j.ecolmodel.2014.06.020.CrossRefGoogle Scholar
  56. Elwany, M.H.S. 2011a. Characteristics, restoration, and enhancement of southern California lagoons. Journal of Coastal Research 59: 246–255.  https://doi.org/10.2112/SI59-026.1.CrossRefGoogle Scholar
  57. Elwany, M.H.S. 2011b. San Dieguito lagoon restoration project, 93. La Jolla: Coastal Environments.Google Scholar
  58. Elwany, M.H.S., R.E. Flick, and S. Aijaz. 1998. Opening and closure of a marginal southern California lagoon inlet. Estuaries 21 (2): 246–254.  https://doi.org/10.2307/1352472.CrossRefGoogle Scholar
  59. Elwany, M.H.S., S. Schroeter, and M. Page. 2017. The hydrological dynamics of San Dieguito Lagoon in southern California. in prep. Google Scholar
  60. Evans, W., B. Hales, and P.G. Strutton. 2013. pCO2 distributions and air–water CO2 fluxes in the Columbia River estuary. Estuarine, Coastal and Shelf Science 117: 260–272.  https://doi.org/10.1016/j.ecss.2012.12.003.CrossRefGoogle Scholar
  61. Faber, P.A., V. Evrard, R.J. Woodland, I.C. Cartwright, and P.L.M. Cook. 2014. Porewater exchange driven by tidal pumping causes alkalinity export in two intertidal inlets. Limnology and Oceanography 59 (5): 1749–1763.  https://doi.org/10.4319/lo.2014.59.5.1749.CrossRefGoogle Scholar
  62. Fagan, K.E., and F.T. Mackenzie. 2007. Air–sea CO2 exchange in a subtropical estuarine-coral reef system, Kaneohe Bay, Oahu, Hawaii. Marine Chemistry 106 (1-2): 174–191.  https://doi.org/10.1016/j.marchem.2007.01.016.CrossRefGoogle Scholar
  63. Feely, R.A., S.R. Alin, J. Newton, C.L. Sabine, M. Warner, A. Devol, C. Krembs, and C. Maloy. 2010. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science 88 (4): 442–449.  https://doi.org/10.1016/j.ecss.2010.05.004.CrossRefGoogle Scholar
  64. Flecha, S., I.E. Huertas, G. Navarro, E.P. Morris, and J. Ruiz. 2014. Air–water CO2 fluxes in a highly heterotrophic estuary. Estuaries and Coasts 38: 2295–2309.CrossRefGoogle Scholar
  65. Flint, L.E., A.L. Flint, B.J. Stolp, and W.R. Danskin. 2012. Water-balance and groundwater-flow estimation for an arid environment: San Diego region, California. Hydrology and Earth System Sciences Discussions 9 (3): 2717–2762.  https://doi.org/10.5194/hessd-9-2717-2012.CrossRefGoogle Scholar
  66. Frankignoulle, M., I. Bourge, and R. Wollast. 1995. Atmospheric CO2 fluxes in a highly polluted estuary (the Scheldt). Limnology and Oceanography 41: 365–369.CrossRefGoogle Scholar
  67. Frankignoulle, M., G. Abril, A.V. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, and J.-M. Théate. 1998. Carbon dioxide emissions from European estuaries. Science 282 (5388): 434–436.  https://doi.org/10.1126/science.282.5388.434.CrossRefGoogle Scholar
  68. Friis, K., A. Körtzinger, and D.W.R. Wallace. 2003. The salinity normalization of marine inorganic carbon chemistry data. Geophysical Research Letters 30 (2): 1085.  https://doi.org/10.1029/2002GL015898.
  69. Gaillardet, J., B. Dupré, P. Louvat, and C.J. Allègre. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology 159 (1-4): 3–30.  https://doi.org/10.1016/S0009-2541(99)00031-5.CrossRefGoogle Scholar
  70. Gattuso, J.P., M. Frankignoulle, and R. Wollast. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecological Systems 29 (1): 405–434.  https://doi.org/10.1146/annurev.ecolsys.29.1.405.CrossRefGoogle Scholar
  71. Guo, X., M. Dai, W. Zhai, W.-J. Cai, and B. Chen. 2009. CO2flux and seasonal variability in a large subtropical estuarine system, the Pearl River Estuary, China. Journal of Geophysical Research 114 (G3): G03013.  https://doi.org/10.1029/2008JG000905.
  72. Gupta, G., V. Sarma, R. Robin, A. Raman, M.J. Kumar, M. Rakesh, and B. Subramanian. 2008. Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India). Biogeochemistry 87 (3): 265–285.  https://doi.org/10.1007/s10533-008-9183-x.CrossRefGoogle Scholar
  73. Hélie, J.-F., C. Hillaire-Marcel, and B. Rondeau. 2002. Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St. Lawrence River—isotopic and chemical constraint. Chemical Geology 186: 117–138.  https://doi.org/10.1016/S0009-2541(01)00417-X.
  74. Herbert, R.A. 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology Reviews 23 (5): 563–590.  https://doi.org/10.1111/j.1574-6976.1999.tb00414.x.CrossRefGoogle Scholar
  75. Herrmann, M., R.G. Najjar, W.M. Kemp, R.B. Alexander, E.W. Boyer, W.-J. Cai, P.C. Griffith, K.D. Kroeger, S.L. McCallister, and R.A. Smith. 2015. Net ecosystem production and organic carbon balance of U.S. East Coast estuaries: a synthesis approach. Global Biogeochemical Cycles 29 (1): 96–111.  https://doi.org/10.1002/2013GB004736.CrossRefGoogle Scholar
  76. Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, N.N. Price, B. Peterson, Y. Takeshita, P.G. Matson, E.D. Crook, K.J. Kroeker, M.C. Gambi, E.B. Rivest, C.A. Frieder, P.C. Yu, T.R. Martz, and W.-C. Chin. 2011. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE 6 (12): e28983.  https://doi.org/10.1371/journal.pone.0028983.
  77. Hopkinson, C.S., and J.J. Vallino. 1995. The relationships among Man's activities in watersheds and estuaries: a model of runoff effects on patterns of estuarine community metabolism. Estuaries 18 (4): 598–621.  https://doi.org/10.2307/1352380.CrossRefGoogle Scholar
  78. Houghton, R.A., and G.M. Woodwell. 1980. The Flax pond ecosystem study: exchanges of CO2 between a salt marsh and the atmosphere. Ecology 61 (6): 1434–1445.  https://doi.org/10.2307/1939052.CrossRefGoogle Scholar
  79. Howland, R.J.M., A.D. Tappin, R.J. Uncles, D.H. Plummer, and N.J. Bloomer. 2000. Distributions and seasonal variability of pH and alkalinity in the Tweed Estuary, UK. The Science of the Total Environment 251-252: 125–138.  https://doi.org/10.1016/S0048-9697(00)00406-X.CrossRefGoogle Scholar
  80. Hu, X., and W.-J. Cai. 2011. An assessment of ocean margin anaerobic processes on oceanic alkalinity budget. Global Biogeochemical Cycles 25 (3): GB3003.  https://doi.org/10.1029/2010GB003859.
  81. Huang, T.-H., Y.-H. Fu, P.-Y. Pan, and C.-T.A. Chen. 2012. Fluvial carbon fluxes in tropical rivers. Current Opinion in Environmental Sustainability 4 (2): 162–169.  https://doi.org/10.1016/j.cosust.2012.02.004.CrossRefGoogle Scholar
  82. Hyndes, G.A., I. Nagelkerken, R.J. McLeod, R.M. Connolly, P.S. Lavery, and M.A. Vanderklift. 2014. Mechanisms and ecological role of carbon transfer within coastal seascapes. Biological Reviews of the Cambridge Philosophical Society 89 (1): 232–254.  https://doi.org/10.1111/brv.12055.CrossRefGoogle Scholar
  83. Jiang, L.-Q., W.-J. Cai, and Y. Wang. 2008. A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries. Limnology and Oceanography 53 (6): 2603–2615.  https://doi.org/10.4319/lo.2008.53.6.2603.CrossRefGoogle Scholar
  84. Kaushal, S.S., G.E. Likens, R.M. Utz, M.L. Pace, M. Grese, and M. Yepsen. 2013. Increased river alkalinization in the eastern U.S. Environmental Science and Technology 47 (18): 10302–10311.  https://doi.org/10.1021/es401046s.CrossRefGoogle Scholar
  85. Kéroul, R., and A. Aminot. 1997. Fluorometric determination of ammonia in sea and estuarine waters by direct segmented flow analysis. Marine Chemistry 57 (3-4): 265–275.  https://doi.org/10.1016/S0304-4203(97)00040-6.CrossRefGoogle Scholar
  86. Laruelle, G.G., H.H. Dürr, C.P. Slomp, and A.V. Borges. 2010. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophysical Research Letters 37 (15): L15607.  https://doi.org/10.1029/2010GL043691.
  87. Lavoie, D., R.W. Macdonald, and K.L. Denman. 2009. Primary productivity and export fluxes on the Canadian shelf of the Beaufort Sea: a modelling study. Journal of Marine Systems 75 (1-2): 17–32.  https://doi.org/10.1016/j.jmarsys.2008.07.007.CrossRefGoogle Scholar
  88. Le Quéré, C., R. Moriarty, R.M. Andrew, G.P. Peters, P. Ciais, P. Friedlingstein, S.D. Jones, S. Sitch, P. Tans, A. Arneth, T.A. Boden, L. Bopp, Y. Bozec, J.G. Canadell, L.P. Chini, F. Chevallier, C.E. Cosca, I. Harris, M. Hoppema, R.A. Houghton, J.I. House, A.K. Jain, T. Johannessen, E. Kato, R.F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C.S. Landa, P. Landschützer, A. Lenton, I.D. Lima, G. Marland, J.T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M.R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J.E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B.D. Stocker, A.J. Sutton, T. Takahashi, B. Tilbrook, G.R. van der Werf, N. Viovy, Y.P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng. 2015. Global carbon budget 2014. Earth System Science Data 7 (1): 47–85.  https://doi.org/10.5194/essd-7-47-2015.CrossRefGoogle Scholar
  89. Liska, R.D. 1964. The geology and biostratigraphy of letterbox canyon. San Diego County: San Diego State College San Diego.Google Scholar
  90. Lopes, C.B., A.I. Lillebø, P. Pato, J.M. Dias, S.M. Rodrigues, E. Pereira, and A.C. Duarte. 2008. Inputs of organic carbon from Ria de Aveiro coastal lagoon to the Atlantic Ocean. Estuarine, Coastal and Shelf Science 79 (4): 751–757.  https://doi.org/10.1016/j.ecss.2008.06.014.CrossRefGoogle Scholar
  91. Mackenzie, F.T., and A.J. Andersson. 2011. Biological control on diagenesis: influence of bacteria and relevance to ocean acidification. In Encyclopedia of Geobiology, 137–143: Springer.Google Scholar
  92. Mackenzie, F.T., and L.R. Kump. 1995. Reverse weathering, clay mineral formation, and oceanic element cycles. Science 270 (5236): 586–587.  https://doi.org/10.1126/science.270.5236.586.CrossRefGoogle Scholar
  93. Mackenzie, F., A. Andersson, A. Lerman, and L.M. Ver. 2005. Boundary exchanges in the global coastal margin: implications for the organic and inorganic carbon cycles. The Sea 13: 193–225.Google Scholar
  94. Macklin, P.A., D.T. Maher, and I.R. Santos. 2014. Estuarine canal estate waters: hotspots of CO2 outgassing driven by enhanced groundwater discharge? Marine Chemistry 167: 82–92.  https://doi.org/10.1016/j.marchem.2014.08.002.CrossRefGoogle Scholar
  95. Maher, D.T., and B.D. Eyre. 2012. Carbon budgets for three autotrophic Australian estuaries: implications for global estimates of the coastal air-water CO2flux. Global Biogeochemical Cycles 26 (1): GB1032.  https://doi.org/10.1029/2011GB004075.
  96. Maher, D.T., I.R. Santos, L. Golsby-Smith, J. Gleeson, and B.D. Eyre. 2013. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink? Limnology and Oceanography 58 (2): 475–488.  https://doi.org/10.4319/lo.2013.58.2.0475.CrossRefGoogle Scholar
  97. Marcus, L., and A. Kondolf. 1989. The coastal wetlands of San Diego County. San Diego: California State Coastal Conservancy.Google Scholar
  98. McGrath, T., E. McGovern, R.R. Cave, and C. Kivimäe. 2015. The inorganic carbon chemistry in coastal and shelf waters around Ireland. Estuaries and Coasts 39: 27–39.CrossRefGoogle Scholar
  99. Menne, M.J., I. Durre, R.S. Vose, B.E. Gleason, and T.G. Houston. 2012. An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology 29 (7): 897–910.  https://doi.org/10.1175/JTECH-D-11-00103.1.CrossRefGoogle Scholar
  100. Middelburg, J.J., and P.M.J. Herman. 2007. Organic matter processing in tidal estuaries. Marine Chemistry 106 (1-2): 127–147.  https://doi.org/10.1016/j.marchem.2006.02.007.CrossRefGoogle Scholar
  101. Millero, F.J. 2010. Carbonate constants for estuarine waters. Marine and Freshwater Research 61 (2): 139.  https://doi.org/10.1071/MF09254.CrossRefGoogle Scholar
  102. Millero, F.J., K. Lee, and M. Roche. 1998. Distribution of alkalinity in the surface waters of the major oceans. Marine Chemistry 60 (1-2): 111–130.  https://doi.org/10.1016/S0304-4203(97)00084-4.CrossRefGoogle Scholar
  103. Moore, W.S. 1999. The subterranean estuary: a reaction zone of ground water and sea water. Marine Chemistry 65 (1-2): 111–125.  https://doi.org/10.1016/S0304-4203(99)00014-6.CrossRefGoogle Scholar
  104. Moore, W.S., J.O. Blanton, and S.B. Joye. 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research 111 (C9): C09006.  https://doi.org/10.1029/2005JC003041.
  105. Moore, W.S., M. Beck, T. Riedel, M. Rutgers van der Loeff, O. Dellwig, T.J. Shaw, B. Schnetger, and H.J. Brumsack. 2011. Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: a decade of studies in the German Wadden Sea. Geochimica et Cosmochimica Acta 75 (21): 6535–6555.  https://doi.org/10.1016/j.gca.2011.08.037.CrossRefGoogle Scholar
  106. Mørk, E.T., M.K. Sejr, P.A. Stæhr, and L.L. Sørensen. 2016. Temporal variability of air-sea CO2 exchange in a low-emission estuary. Estuarine, Coastal and Shelf Science 176: 1–11.  https://doi.org/10.1016/j.ecss.2016.03.022.CrossRefGoogle Scholar
  107. Mudie, P.J., B.M. Browning, and J.W. Speth. 1976. The natural resources of San Dieguito and Batiquitos lagoons, ed. State of California Department of Fish and Game.Google Scholar
  108. Neubauer, S.C., and I.C. Anderson. 2003. Transport of dissolved inorganic carbon from a tidal freshwater marsh to the York river estuary. Limnology and Oceanography 48 (1): 299–307.  https://doi.org/10.4319/lo.2003.48.1.0299.CrossRefGoogle Scholar
  109. NOAA. 2013. Tides/water levels - 9410230. La Jolla: National Oceanic and Atmospheric Administration.Google Scholar
  110. Odum, W.E., E.P. Odum, and H.T. Odum. 1995. Nature's pulsing paradigm. Estuaries 18 (4): 547–555.  https://doi.org/10.2307/1352375.CrossRefGoogle Scholar
  111. Officer, C.B., T.J. Smayda, and R. Mann. 1982. Benthic filter feeding: a natural eutrophication control. Marine Ecology Progress Series 9: 203–210.  https://doi.org/10.3354/meps009203.CrossRefGoogle Scholar
  112. Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.F. Weirig, Y. Yamanaka, and A. Yool. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437 (7059): 681–686.  https://doi.org/10.1038/nature04095.CrossRefGoogle Scholar
  113. Ortega, T., R. Ponce, J. Forja, and A. Gómez-Parra. 2005. Fluxes of dissolved inorganic carbon in three estuarine systems of the Cantabrian Sea (north of Spain). Journal of Marine Systems 53 (1-4): 125–142.  https://doi.org/10.1016/j.jmarsys.2004.06.006.CrossRefGoogle Scholar
  114. Page, H.M., R.L. Petty, and D.E. Meade. 1995. Influence of watershed runoff on nutrient dynamics in a southern California salt marsh. Estuarine, Coastal and Shelf Science 41 (2): 163–180.  https://doi.org/10.1006/ecss.1995.0059.CrossRefGoogle Scholar
  115. Page, M., S. Schroeter, and D. Reed. 2016. 2015 Annual report of the status of condition A: Wetland mitigation. San Onofre Nuclear Generating Station (SONGS) Mitigation Program. Google Scholar
  116. Pawlowicz, R., B. Beardsley, and S. Lentz. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences 28 (8): 929–937.  https://doi.org/10.1016/S0098-3004(02)00013-4.CrossRefGoogle Scholar
  117. Pedler, B.E., L.I. Aluwihare, and F. Azam. 2014. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proceedings of the National Academy of Sciences 111 (20): 7202–7207.  https://doi.org/10.1073/pnas.1401887111.CrossRefGoogle Scholar
  118. Portnoy, J.W., and A.E. Giblin. 1997. Biogeochemical effects of seawater restoration to diked salt marshes. Ecological Applications 7 (3): 1054–1063.  https://doi.org/10.1890/1051-0761(1997)007[1054:BEOSRT]2.0.CO;2.CrossRefGoogle Scholar
  119. Rasera, M.D.F.F.L., A.V. Krusche, J.E. Richey, M.V.R. Ballester, and R.L. Victória. 2013. Spatial and temporal variability of pCO2 and CO2 efflux in seven Amazonian rivers. Biogeochemistry 116 (1-3): 241–259.  https://doi.org/10.1007/s10533-013-9854-0.CrossRefGoogle Scholar
  120. Raymond, P.A., J.E. Bauer, and J.J. Cole. 2000. Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York river estuary. Limnology and Oceanography 45 (8): 1707–1717.  https://doi.org/10.4319/lo.2000.45.8.1707.CrossRefGoogle Scholar
  121. Raymond, P.A., N.H. Oh, R.E. Turner, and W. Broussard. 2008. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451 (7177): 449–452.  https://doi.org/10.1038/nature06505.CrossRefGoogle Scholar
  122. Regnier, P., P. Friedlingstein, P. Ciais, F.T. Mackenzie, N. Gruber, I.A. Janssens, G.G. Laruelle, R. Lauerwald, S. Luyssaert, A.J. Andersson, S. Arndt, C. Arnosti, A.V. Borges, A.W. Dale, A. Gallego-Sala, Y. Goddéris, N. Goossens, J. Hartmann, C. Heinze, T. Ilyina, F. Joos, D.E. LaRowe, J. Leifeld, F.J.R. Meysman, G. Munhoven, P.A. Raymond, R. Spahni, P. Suntharalingam, and M. Thullner. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience 6 (8): 597–607.  https://doi.org/10.1038/ngeo1830.CrossRefGoogle Scholar
  123. Rengarajan, R., and V.V.S.S. Sarma. 2015. Submarine groundwater discharge and nutrient addition to the coastal zone of the Godavari estuary. Marine Chemistry 172: 57–69.  https://doi.org/10.1016/j.marchem.2015.03.008.CrossRefGoogle Scholar
  124. Robinson, C., B. Gibbes, H. Carey, and L. Li. 2007. Salt-freshwater dynamics in a subterranean estuary over a spring-neap tidal cycle. Journal of Geophysical Research 112 (C9): C09007.  https://doi.org/10.1029/2006JC003888.
  125. Rogers, K., N. Saintilan, and C.D. Woodroffe. 2014. Surface elevation change and vegetation distribution dynamics in a subtropical coastal wetland: implications for coastal wetland response to climate change. Estuarine, Coastal and Shelf Science 149: 46–56.  https://doi.org/10.1016/j.ecss.2014.07.009.CrossRefGoogle Scholar
  126. Romigh, M.M., S.E. Davis, V.H. Rivera-Monroy, and R.R. Twilley. 2006. Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal Everglades. Hydrobiologia 569 (1): 505–516.  https://doi.org/10.1007/s10750-006-0152-x.CrossRefGoogle Scholar
  127. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W. Wallace, B. Tilbrook, F.J. Millero, T.H. Peng, A. Kozyr, T. Ono, and A.F. Rios. 2004. The oceanic sink for anthropogenic CO2. Science 305 (5682): 367–371.  https://doi.org/10.1126/science.1097403.CrossRefGoogle Scholar
  128. Sanford, L.P., W.C. Boicourt, and S.R. Rives. 1992. Model for estimating tidal flushing of small embayments. Journal of Waterway, Port, Coastal, and Ocean Engineering 118 (6): 635–654.  https://doi.org/10.1061/(ASCE)0733-950X(1992)118:6(635).CrossRefGoogle Scholar
  129. Santos, I.R., J. de Weys, D.R. Tait, and B.D. Eyre. 2012. The contribution of croundwater discharge to nutrient exports from a coastal catchment: post-flood seepage increases estuarine N/P ratios. Estuaries and Coasts 36: 56–73.CrossRefGoogle Scholar
  130. Santos, I.R., K.R. Bryan, C.A. Pilditch, and D.R. Tait. 2014. Influence of porewater exchange on nutrient dynamics in two New Zealand estuarine intertidal flats. Marine Chemistry 167: 57–70.  https://doi.org/10.1016/j.marchem.2014.04.006.CrossRefGoogle Scholar
  131. Santos, I.R., M. Beck, H.-J. Brumsack, D.T. Maher, T. Dittmar, H. Waska, and B. Schnetger. 2015. Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: insights from coupled 222Rn and pCO2 observations in the German Wadden Sea. Marine Chemistry 171: 10–20.  https://doi.org/10.1016/j.marchem.2015.02.005.CrossRefGoogle Scholar
  132. Sharp, J.H., R. Benner, L. Bennett, C.A. Carlson, R. Dow, and S.E. Fitzwater. 1993. Re-evaluation of high temperature combustion and chemical oxidation measurements of dissolved organic carbon in seawater. Limnology and Oceanography 38 (8): 1774–1782.  https://doi.org/10.4319/lo.1993.38.8.1774.CrossRefGoogle Scholar
  133. Sippo, J.Z., D.T. Maher, D.R. Tait, C. Holloway, and I.R. Santos. 2016. Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Global Biogeochemical Cycles 30 (5): 753–766.  https://doi.org/10.1002/2015GB005324.CrossRefGoogle Scholar
  134. Smith, S.V., and J.T. Hollibaugh. 1993. Coastal metabolism and the oceanic organic carbon balance. Reviews of Geophysics 31 (1): 75–89.  https://doi.org/10.1029/92RG02584.CrossRefGoogle Scholar
  135. Smith, C.J., R.D. deLaune, and W.H. Patrick Jr. 1983. Carbon dioxide emission and carbon accumulation in coastal wetlands. Estuarine, Coastal and Shelf Science 17 (1): 21–29.  https://doi.org/10.1016/0272-7714(83)90042-2.CrossRefGoogle Scholar
  136. Soetaert, K., and P.M.J. Herman. 1995. Carbon flows in the Westerschelde estuary (The Netherlands) evaluated by means of an ecosystem model (MOSES). Hydrobiologia 311 (1-3): 247–266.  https://doi.org/10.1007/BF00008584.CrossRefGoogle Scholar
  137. Southern California Edison. 2005. San Dieguito wetlands restoration project: final restoration plan: Southern California Edison.Google Scholar
  138. Stets, E.G., V.J. Kelly, and C.G. Crawford. 2014. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification. Science of the Total Environment 488–489: 280–289.  https://doi.org/10.1016/j.scitotenv.2014.04.054.CrossRefGoogle Scholar
  139. Taylor, J. 1997. Introduction to error analysis, the study of uncertainties in physical measurements. New York, NY: University Science Books.Google Scholar
  140. Thomas, H., L.S. Schiettecatte, K. Suykens, Y.J.M. Koné, E.H. Shadwick, A.E.F. Prowe, Y. Bozec, H.J.W. de Baar, and A.V. Borges. 2009. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences 6 (2): 267–274.  https://doi.org/10.5194/bg-6-267-2009.CrossRefGoogle Scholar
  141. Tzortziou, M., P.J. Neale, J.P. Megonigal, C.L. Pow, and M. Butterworth. 2011. Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary. Marine Ecology Progress Series 426: 41–56.  https://doi.org/10.3354/meps09017.CrossRefGoogle Scholar
  142. Uppström, L.R. 1974. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep-Sea Research 21: 161–162.Google Scholar
  143. Valle-Levinson, A. 2010. Contemporary issues in estuarine physics. Cambridge: University Press.  https://doi.org/10.1017/CBO9780511676567.CrossRefGoogle Scholar
  144. van Heuven, S., J.W.B. Rae, D.W.R. Wallace, E. Lewis, and D. Pierrot. 2011. MATLAB program developed for CO2 system calculations, ed. Carbon dioxide information analysis center. Oak Ridge: Oak Ridge National Laboratory.Google Scholar
  145. Vant, W.N., M.M. Gibbs, K.A. Safi, and S.F. Thrush. 1998. Fluxes of organic carbon in Manukau harbour, New Zealand. Estuaries 21 (4): 560–570.  https://doi.org/10.2307/1353295.CrossRefGoogle Scholar
  146. Wahl, M.H., H.N. McKellar, and T.M. Williams. 1997. Patterns of nutrient loading in forested and urbanized coastal streams. Journal of Experimental Marine Biology and Ecology 213 (1): 111–131.  https://doi.org/10.1016/S0022-0981(97)00012-9.CrossRefGoogle Scholar
  147. Wang, Z.A., and W.-J. Cai. 2004. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (The Duplin River): a marsh CO2 pump. Limnology and Oceanography 49 (2): 341–354.  https://doi.org/10.4319/lo.2004.49.2.0341.CrossRefGoogle Scholar
  148. Wang, G., Z. Wang, W. Zhai, W.S. Moore, Q. Li, X. Yan, D. Qi, and Y. Jiang. 2015. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China. Geochimica et Cosmochimica Acta 149: 103–114.  https://doi.org/10.1016/j.gca.2014.11.001.CrossRefGoogle Scholar
  149. Wang, Z.A., K.D. Kroeger, N.K. Ganju, M.E. Gonneea, and S.N. Chu. 2016. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnology and Oceanography 61 (5): 1916–1931.  https://doi.org/10.1002/lno.10347.CrossRefGoogle Scholar
  150. Wang, S.R., D. Di Iorio, W.-J. Cai, and C.S. Hopkinson. 2017. Inorganic carbon and oxygen dynamics in a marsh-dominated estuary. Limnology and Oceanography.  https://doi.org/10.1002/lno.10614.
  151. Weston, N.B., S.C. Neubauer, D.J. Velinsky, and M.A. Vile. 2014. Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120 (1-3): 163–189.  https://doi.org/10.1007/s10533-014-9989-7.CrossRefGoogle Scholar
  152. Wilson, B.J., B. Mortazavi, and R.P. Kiene. 2015. Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary. Biogeochemistry 123 (3): 329–347.  https://doi.org/10.1007/s10533-015-0085-4.CrossRefGoogle Scholar
  153. Winter, J.G., and P.J. Dillon. 2005. Effects of golf course construction and operation on water chemistry of headwater streams on the Precambrian Shield. Environmental Pollution 133 (2): 243–253.  https://doi.org/10.1016/j.envpol.2004.05.037.CrossRefGoogle Scholar
  154. Winter, P.E.D., T.A. Schlacher, and D. Baird. 1996. Carbon flux between an estuary and the ocean: a case for outwelling. Hydrobiologia 337: 123–132.CrossRefGoogle Scholar
  155. Wolf-Gladrow, D.A., R.E. Zeebe, C. Klaas, A. Körtzinger, and A.G. Dickson. 2007. Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Marine Chemistry 106: 287–300.CrossRefGoogle Scholar
  156. Yankovsky, A.E., R. Torres, L.M. Torres-Garcia, and K. Jeon. 2012. Interaction of tidal and fluvial processes in the transition zone of the Santee River, SC, USA. Estuaries and Coasts 35: 1500–1509.CrossRefGoogle Scholar
  157. Yao, H., and X. Hu. 2017. Responses of carbonate system and CO2 flux to extended drought and intense flooding in a semiarid subtropical estuary. Limnology and Oceanography.  https://doi.org/10.1002/lno.10646.
  158. Young, M., M.E. Gonneea, J. Herrera-Silveira, and A. Paytan. 2005. Export of dissolved and particulate carbon and nitrogen from a mangrove-dominated lagoon, Yucatan Peninsula, Mexico. International Journal of Ecology and Environmental Sciences 31: 189–202.Google Scholar
  159. Young, A.P., P.N. Adams, W.C. O'Reilly, R.E. Flick, and R.T. Guza. 2011. Coastal cliff ground motions from local ocean swell and infragravity waves in southern California. Journal of Geophysical Research 116: C09007.  https://doi.org/10.1029/2011JC007175.
  160. Zablocki, J.A., A.J. Andersson, and N.R. Bates. 2011. Diel aquatic CO2 system dynamics of a Bermudian mangrove environment. Aquatic Geochemistry 17: 841–859.CrossRefGoogle Scholar
  161. Zemmelink, H.J., H.A. Slagter, C. van Slooten, J. Snoek, B. Heusinkveld, J. Elbers, N.J. Bink, W. Klaassen, C.J.M. Philippart, and H.J.W. de Baar. 2009. Primary production and eddy correlation measurements of CO2 exchange over an intertidal estuary. Geophysical Research Letters 36 (19): L19606.  https://doi.org/10.1029/2009GL039285.
  162. Zhai, W., M. Dai, W.-J. Cai, Y. Wang, and H. Hong. 2005. The partial pressure of carbon dioxide and air–sea fluxes in the northern South China Sea in spring, summer and autumn. Marine Chemistry 96: 87–97.CrossRefGoogle Scholar
  163. Zhai, W., M. Dai, and X. Guo. 2007. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Marine Chemistry 107: 342–356.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2017

Authors and Affiliations

  • May-Linn Paulsen
    • 1
    Email author
  • Andreas J. Andersson
    • 1
  • Lihini Aluwihare
    • 1
  • Tyler Cyronak
    • 1
  • Sydney D’Angelo
    • 1
    • 2
  • Charlie Davidson
    • 1
    • 3
  • Hany Elwany
    • 4
  • Sarah N. Giddings
    • 1
  • Heather N. Page
    • 1
  • Magali Porrachia
    • 1
  • Stephen Schroeter
    • 5
  1. 1.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
  2. 2.Midwestern UniversityGlendaleUSA
  3. 3.Kinnetic Laboratories IncorporatedCarlsbadUSA
  4. 4.Coastal EnvironmentsLa JollaUSA
  5. 5.University of California Santa Barbara Marine Science InstituteSanta BarbaraUSA

Personalised recommendations