Estuaries and Coasts

, Volume 41, Issue 1, pp 1–12 | Cite as

Storm-Induced Atlantic Herring (Clupea harengus) Egg Mortality in Baltic Sea Inshore Spawning Areas

  • Dorothee Moll
  • Paul Kotterba
  • Lena von Nordheim
  • Patrick Polte


During their spring migration, Atlantic herring (Clupea harengus) populations in the Baltic Sea rely on shallow transitional waters, such as estuaries, bays, and lagoons for spawning. Such inshore spawning grounds are ecologically important by providing suitable substrates for demersal egg deposition. These habitats are often highly impacted by multiple anthropogenic threats. Decades of eutrophication have caused a decline in depth distribution of submerged aquatic vegetation, the main herring spawning substrate in the Baltic Sea. Nowadays, spawning beds are limited to the shallow littoral zone (≤3 m depth). Accordingly, macrophytes are increasingly exposed to mechanic forcing due to storm-induced wave action. Generally, reproductive success and year class strength of the Western Baltic herring population is strongly determined by the survival of early life stages such as eggs and larvae in local nursery areas. However, explicit mechanisms by which local stressors might affect overall recruitment are currently not well understood. Hypothesizing that aquatic vegetation limited by water depth causes high herring egg mortality due to increased exposure to storm-induced hydrodynamics, we performed a combination of field studies investigating the impact of storm events on herring egg loss. Results of an egg loss experiment revealed a total egg loss of 29% in one single spawning bed during a storm event within the spawning season and the quantification of eggs attached to macrophyte litter on the shoreline emphasize the potential for regional weather extremes such as storm events to act as influential stressors for herring reproduction.


Atlantic herring Clupea harengus Baltic Sea Storm effects Egg loss Submerged aquatic vegetation 



We would like to thank the many student helpers and our colleagues from the Thünen Institute of Baltic Sea Fisheries who contributed to this study, especially Rainer Oeberst and Dr. Marta Moyano from the University of Hamburg who provided constructive comments and suggestions on the Figures. We would like to thank the editors and three anonymous reviewers for their helpful comments. Thanks are extended to the German National Meteorological Service (DWD) for providing the wind data. The research leading to these results received funding from BONUS INSPIRE (D.M.) and BONUS BIO-C3 (P.K.), the joint Baltic Sea research and development program (Art 185), funded jointly by the European Union and the Federal Ministry of Education and Research of Germany (BMBF 03F0681; 03F0682). L.v.N. received funds from the German Federal Environmental Foundation (DBU), and P.P. was funded by the EU Data Collection Framework (DCF).

Supplementary material

12237_2017_259_MOESM1_ESM.pdf (675 kb)
ESM 1 (PDF 675 kb)


  1. Alderdice, D.F., and F.P.J. Velsen. 1971. Some effects of salinity and temperature on early development of Pacific herring (Clupea pallasi). Journal Fisheries Research Board of Canada 28: 1545–1562.CrossRefGoogle Scholar
  2. Aneer, G. 1987. High natural mortality of Baltic herring (Clupea harengus) eggs caused by algal exudates? Marine Biology 94: 163–169.CrossRefGoogle Scholar
  3. Aneer, G. 1989. Herring (Clupea harengus L.) spawning and spawning ground characteristics in the Baltic Sea. Fisheries Research 8: 169–195.CrossRefGoogle Scholar
  4. Aneer, G., G. Florell, U. Kautsky, S. Nellbring, and L. Sjöstedt. 1983. In-situ observations of Baltic herring (Clupea harengus membras) spawning behaviour in the Askö-Landsort area, northern Baltic proper. Marine Biology 74: 105–110.CrossRefGoogle Scholar
  5. Anwand, K. 1962. Die Fruchtbarkeit der Frühjahrs- und Herbstheringe aus den Gewässern um Rügen. Zeitschrift für Fischerei 11: 463–473 [The fertility of the Rügen spring and autumn spawning herring.]Google Scholar
  6. Balon, E. 1975. Reproductive gulids of fishes: a proposal and definition. Journal Fisheries Research Board of Canada 32: 821–864.CrossRefGoogle Scholar
  7. Bishop, M.A., J.T. Watson, K. Kuletz, and T. Morgan. 2015. Pacific herring (Clupea pallasii) consumption by marine birds during winter in Prince William sound, Alaska. Fisheries Oceanography 24 (1): 1–13.CrossRefGoogle Scholar
  8. Blaxter, J.H.S. 1956. Herring rearing II. The effect of temperature and other factors on development Marine Research Scotland 5: 1–19.Google Scholar
  9. Blümel, C., A. Domin, C. Krause, M. Schubert, U. Schiewer, and H. Schubert. 2002. Der historische Makrophytenbewuchs der inneren Gewässer der deutschen Ostseeküste. Rostocker Meeresbiologische Beiträge 10: 5–111 [The historical macrophyte coverage of the inner coastal waters of the German Baltic Sea Coast.]Google Scholar
  10. Braum, E. 1973. Einflüsse chronischen exogenen Sauerstoffmangels auf die Embryogenese des Herings (Clupea harengus). Netherlands Journal of Sea Research 7: 363–375 [Impact of chronical exogene oxygen deficiency on the embryogenesis of herring (Clupea harengus).]CrossRefGoogle Scholar
  11. Cardinale, M., and F. Arrhenius. 2000. Decreasing weight-at-age of Atlantic herring (Clupea harengus) from the Baltic Sea between 1986 and 1996: a statistical analysis. ICES Journal of Marine Science 57: 882–893.CrossRefGoogle Scholar
  12. Casini, M., M. Cardinale, and F. Arrhenius. 2004. Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea. ICES Journal of Marine Science 61: 1267–1277.CrossRefGoogle Scholar
  13. Coumou, D., and S. Rahmstorf. 2012. A decade of weather extremes. Nature Climate Change 2: 491–496.Google Scholar
  14. Cruz-Palacios, V., and B.I. van Tussenbroek. 2005. Simulation of hurricane-like disturbances on a Caribbean seagrass bed. Journal of Experimental Marine Biology and Ecology 324: 44–60.CrossRefGoogle Scholar
  15. Cushing, D.H. 1975. Marine ecology and fisheries. London: Cambridge University Press 292 pp.Google Scholar
  16. Dennison, W.C. 1987. Effects of light on seagrass photosynthesis, growth and depth distribution. Aquatic Botany 27: 15–26.CrossRefGoogle Scholar
  17. Duarte, C.M., and M. Alcaraz. 1989. To produce many small or few large eggs: a size-independent reproductive tactic of fish. Oecologia 80: 401–404.CrossRefGoogle Scholar
  18. FAO. 2014. Clupea harengus (Linnaeus, 1758). In: Species Fact Sheets. Ed By FAO.Google Scholar
  19. Foy, R.J., and A.J. Paul. 1999. Winter feeding and changes in somatic energy content of age-0 Pacific herring in Prince William Sound, Alaska. Transactions of the American Fisheries Society 128 (6): 1193–1200.CrossRefGoogle Scholar
  20. Geisel, T. 1986. Pflanzensoziologische Untersuchungen am Makrophytobenthos des Greifswalder Boddens. Diploma thesis, University of Rostock, Germany. [Phytosociological investigations of macrophytobenthos in Greifswald Bay.]Google Scholar
  21. Geisel, T., and U. Messner. 1989. Flora und Fauna des Bodens im Greifswalder Bodden. Meer und Museum 5: 44–51 [Flora and fauna of the soil in Greifswald Bay.]Google Scholar
  22. Gröger, J.P., G.H. Kruse, and N. Rohlf. 2010. Salve to the rhythm: how large-scale climate cycles trigger herring (Clupea harengus) regeneration in the North Sea. ICES Journal of Marine Science 67: 454–465.CrossRefGoogle Scholar
  23. Haegele, C.W. 1993. Seabird predation of Pacific herring, Clupea pallasi, spawn in British Columbia. Canadian Field-Naturalist 107: 73–82.Google Scholar
  24. Haegele, C.W., and J.F. Schweigert. 1989. Egg loss from Pacific herring spawns in Barkley Sound in 1988. Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 2037:37.Google Scholar
  25. Hart, J.L., and A.L. Tester. 1934. Quantitative studies on herring spawning. Transactions of the American Fisheries Society 64: 307–312.CrossRefGoogle Scholar
  26. Hay, D.E., and D.C. Miller. 1982. A quantitative assessent of herring spawn lost by storm action in French Creek, 1980. Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 1636: 1–9.Google Scholar
  27. Hempel, G. 1971. Egg production and egg mortality in herring. Rapports et Proces-verbaux des Réunions. Conseil International pour l’Éxploration de la Mer 160: 8–11.Google Scholar
  28. Hempel, G., and K. Schubert. 1968. Sterblichkeitsbestimmungen an einem Eiklumpen des Nordsee-Herings (Clupea harengus L.). Berichte der deutschen wissenschaftlichen Kommission für Meeresforschung 20: 79–83 [Mortality of North Sea herring egg lump (Clupea harengus).]Google Scholar
  29. Hjort, J. 1914. Fluctuations in the great fisheries of Northern Europe viewed in the light of biological research. Rapports et Proces-verbaux des Réunions. Conseil International pour l’Éxploration de la Mer 237: 20pp.Google Scholar
  30. Houde, E.D. 2008. Emerging from Hjort’s shadow. Journal of Northwest Atlantic Fishery Science 41: 53–70.CrossRefGoogle Scholar
  31. Hourston, A., and H. Rosenthal. 1967. Viable hatch from herring eggs torn loose from substrates by storms. Fisheries and Marine Service Research and Development Directorate, Technical Report 653: 5.Google Scholar
  32. ICES (2013) Report of the Herring Assessment Working Group for the Area South of 62N (HAWG). 12–21 March 2013, ICES Headquarters, Copenhagen, Denmark. ICES CM 2013/ACOM:06.Google Scholar
  33. ICES (2014) Report of the Herring Assessment Working Group for the Area South of 62N (HAWG). 11–20 March 2014, ICES Headquarters, Copenhagen, Denmark. ICES CM2014/ACOM:06.1257 pp.Google Scholar
  34. ICES (2015) Report of the Herring Assessment Working Group for the Area South of 62N (HAWG). 10–19 March 2015, ICES Headquarters, Copenhagen, Denmark. ICES CM 2015/ACOM:06.850 pp.Google Scholar
  35. Jones, B.C. 1972. Effect of intertidal exposure on survival and embryonic development of Pacififc herring spawn. Journal Fisheries Research board of Canada 29: 1119–1124.CrossRefGoogle Scholar
  36. Kändler, R., and S. Dutt. 1958. Fecundity of Baltic herring. Rapports et Proces-verbaux des Réunions. Conseil International pour l’Éxploration de la Mer 143: 99–108.Google Scholar
  37. Kanstinger, P. 2014. Key environmental factors influencing the early life history of clupeoid fishes, adding nutrients and heat. Ph.D. dissertation, University of Hamburg, Germany.Google Scholar
  38. Kanstinger, P., J. Beher, G. Grenzdörffer, C. Hammer, K.B. Huebert, D. Stepputis, and M.A. Peck. 2016. What is left? Macrophyte meadows and Atlantic herring (Clupea harengus) spawning sites in the Greifswalder Bodden, Baltic Sea. Estuarine, Coastal and Shelf Science: 1–10.Google Scholar
  39. Kell, V. 1989. Das Phytoplankton des Greifswalder Bodden. In Meer und Museum: pp. 25–35. [The phytoplankton of Greifswald Bay.]Google Scholar
  40. Kinne, O., and H. Rosenthal. 1967. Effects of sulfuric water pollutants on fertilization, embryonic development and larvae of the herring, Clupea harengus. Marine Biology 1: 65–83.CrossRefGoogle Scholar
  41. Klinkhardt, M. 1984. Zum Einfluß des Salzgehaltes auf die Befruchtungsfähigkeit des Laiches der Rügenschen Frühjahrsheringe. Fischerei-Forschung 22: 73–75 [Impact of salinity on fertilitzation of Rügen spring spawning herring eggs.]Google Scholar
  42. Klinkhardt, M. 1986. Gedanken zur Abhängigkeit der Laichentwicklung Rügenscher Frühjahrsheringe (Clupea harengus L.) von Umweltparametern. Fischerei-Forschung Rostock 24: 22–27 [Thoughts on dependency of Rügen spring herring spawn development on environmental parameters.]Google Scholar
  43. Kotterba, P. 2015. Atlantic herring (Clupea harengus) within the estuarine food web of a southern Baltic Sea lagoon. Ph.D. dissertation, University of Hamburg, Germany.Google Scholar
  44. Kotterba, P., C. Kühn, C. Hammer, and P. Polte. 2014. Predation of threespine stickleback (Gasterosteus aculeatus) on the eggs of Atlantic herring (Clupea harengus) in a Baltic Sea lagoon. Limnology and Oceanography 59: 578–587.CrossRefGoogle Scholar
  45. Lambert, T.C. 1990. The effect of population structure on recruitment in herring. ICES Journal of Marine Science 47: 249–255.CrossRefGoogle Scholar
  46. Lambert, T.C., and D.M. Ware. 1984. Reproductive strategies of demersal and pelagic spawning fish. Canadian Journal of Fisheries and Aquatic Sciences 41: 1565–1569.CrossRefGoogle Scholar
  47. Mataraza, L.K., J.B. Terrell, A.B. Munson, and D.E.J. Canfield. 1999. Changes in submerged Macrophytes in relation to tidal storm surges. Journal of Aquatic Plant Management 37: 3–12.Google Scholar
  48. McGurk, M.D. 1986. Natural mortality of marine pelagic fish eggs and larvae: role of spatial patchiness. Marine Ecology Progress Series 34: 227–242.CrossRefGoogle Scholar
  49. Messner, U., and J.A. Von Oertzen. 1990. Recent changes in the Phytal zone of Greifswald Bay. Limnologica 20: 183–186.Google Scholar
  50. Messner, U., and J.A. Von Oertzen. 1991. Long-term changes in the vertical distribution of macrophytobenthic communities in the Greifswalder Bodden. Acta Ichthyologica et Piscatoria 21: 135–143.CrossRefGoogle Scholar
  51. Möllmann, C., G. Kornilovs, M. Fetter, and F.W. Köster. 2004. Feeding ecology of central Baltic Sea herring and sprat. Journal of Fish Biology 65: 1563–1581.CrossRefGoogle Scholar
  52. Morrison, J.A., J.C. Gamble, and I.R. Napier. 1991. Mass mortality of herring eggs associated with a sedimenting diatom bloom. ICES Journal of Marine Science 48: 237–245.CrossRefGoogle Scholar
  53. Munkes, B. 2005a. Eutrophication, phase shift, the delay and the potential return in the Greifswalder Bodden, Baltic Sea. Aquatic Sciences 67: 372–381.CrossRefGoogle Scholar
  54. Munkes, B. 2005b. Seagrass Systems-Stability of seagrass systems against anthropogenic impacts. Ph.D. dissertation, University of Kiel, Germany.Google Scholar
  55. Murua, H., and F. Saborido-Rey. 2003. Female reproductive strategies of marine fish species of the North Atlantic. Journal of Northwest Atlantic Fishery Science 33: 23–31.CrossRefGoogle Scholar
  56. Nissling, A., A. Müller, and H.-H. Hinrichsen. 2003. Specific gravity and vertical distribution of sprat eggs in the Baltic Sea. Journal of Fish Biology 63: 280–299.CrossRefGoogle Scholar
  57. Oeberst, R., M. Dickey-Collas, and R.D.M. Nash. 2009. Mean daily growth of herring larvae in relation to temperature over a range of 5–20°C, based on weekly repeated cruises in the Greifswalder Bodden. ICES Journal of Marine Science 66: 1696–1701.CrossRefGoogle Scholar
  58. Ojaveer, E., J. Annist, H. Jankowski, T. Palm, and T. Raid. 1980. On effect of copper, cadmium and zinc on the embryonic development of Baltic spring spawning herring. Finnish Marine Research 247: 135–140.Google Scholar
  59. Ojaveer, E., A. Lumberg, and H. Ojaveer. 1998. Highlights of zooplankton dynamics in Estonian waters (Baltic Sea). ICES Journal of Marine Science 55: 748–755.CrossRefGoogle Scholar
  60. Overholtz, W.J., and J.S. Link. 2007. Consumption impacts by marine mammals, fish, and seabirds on the Gulf of Maine - Georges Bank Atlantic herring (Clupea harengus) complex during the years 1977-2002. ICES Journal of Marine Science 64: 83–96.Google Scholar
  61. Peck, M.A., P. Kanstinger, L. Holste, and M. Martin. 2012. Thermal windows supporting survival of the earliest life stages of Baltic herring (Clupea harengus). ICES Journal of Marine Science 69: 529–536.CrossRefGoogle Scholar
  62. Petereit, C., H.-H. Hinrichsen, A. Franke, and F.W. Köster. 2014. Floating along buoyancy levels: dispersal and survival of western Baltic fish eggs. Progress in Oceanography 122: 131–152.CrossRefGoogle Scholar
  63. Polte, P., P. Kotterba, C. Hammer, and T. Gröhsler. 2014. Survival bottlenecks in the early ontogenesis of Atlantic herring (Clupea harengus, L.) in coastal lagoon spawning areas of the western Baltic Sea. ICES Journal of Marine Science. doi: 10.1093/icesjms/fst050.Google Scholar
  64. Rajasilta, M., J. Eklund, J. Kääriä, and K. Ranta-Aho. 1989. The deposition and mortality of the eggs of the Baltic herring Clupea harengus membras L., on different substrates in the south-west archipelago of Finland. Journal of Fish Biology 34: 417–427.CrossRefGoogle Scholar
  65. Rajasilta, M., P. Laine, and J. Eklund. 2006. Mortality of herring eggs on different algal substrates (Furcellaria spp. and Cladophora spp.) in the Baltic Sea – An experimental study. Hydrobiologia 554: 127–130.CrossRefGoogle Scholar
  66. Richardson, D.E., J.A. Hare, M.J. Fogarty, and J.S. Link. 2011. Role of egg predation by haddock in the decline of an Atlantic herring population. Proceedings of the National Academy of Sciences 108: 13606–13611.CrossRefGoogle Scholar
  67. Rooper, C.N. 1996. Physical and Biological Factors affecting Pacific Herring Egg Loss in Prince William Sound, Alaska. M.Sc. thesis, University of Alaska Fairbanks, Juneau, USA.Google Scholar
  68. Rooper, C.N., L.J. Haldorson, and T.J. Quinn. 1999. Habitat factors controlling Pacific herring (Clupea pallasi) egg loss in Prince William sound, Alaska. Canadian Journal of Fisheries and Aquatic Sciences 56: 1133–1142.CrossRefGoogle Scholar
  69. Rosenthal, H., and K.-R. Sperling. 1974. Effects of cadmium on Development and Survival of Herring Eggs. In The Early Life History of Fish: The Proceedings of an International Symposium Held at the Dunstaffnage Marine Research Laboratory of the Scottish Marine Biological Association at Oban, Scotland, from May 17–23, 1973, ed. J.H.S. Blaxter, 383–396. Berlin, Heidelberg: Springer Berlin Heidelberg.Google Scholar
  70. Sætre, R., R. Toresen, and T. Anker-Nilssen. 2002. Factors affecting the recruitment variability of the Norwegian spring-spawning herring (Clupea harengus L.). ICES Journal of Marine Science 59: 725–736.CrossRefGoogle Scholar
  71. Scabell, J. 1988. Der Rügensche Frügjahrshering - das Laichgeschehen. Ph.D. dissertation, University of Rostock, Germany. [Rügen spring herring – the spawning event.]Google Scholar
  72. Schiewer, U. 2001. Salzhaff, Greifswalder Bodden, Darß-Zingster Boddenkette: Gewässereutrophierung und Pufferkapazität - ein Vergleich. Rostocker Meeresbiologische Beiträge 9: 5–19 [Salzhaff, Greifswald Bay and Darß-Zingster Boddenkette: Eutrophication and buffering capacity.]Google Scholar
  73. Schiewer, U. 2008. Chapter 4. Greifswalder Bodden, Wismar-Bucht and Salzhaff. In Ecology of Baltic coastal waters, 87–111. Verlag: Springer.CrossRefGoogle Scholar
  74. Schnese, W. 1973. Untersuchungen zur Produktionsbiologie des Greifswalder Boddens (südliche Ostsee) I. die Hydrographie: Salzgehalt, Sauerstoffgehalt, Temperatur und Sestongehalt. Wissenschaftliche Zeitschrift der Universität Rostock 22: 629–639 [Investigations on production biology of Greifswald Bay (southern Baltic Sea) I. Hydrography: Salinity, Oxygen content, Temperature and seston content.]Google Scholar
  75. Schoknecht, G. 1973. Einige Untersuchungsergebnisse über die Wasserbeschaffenheit des Greifswalder Boddens. Acta Hydrochimica et Hydrobiologica 1: 387–395 [Some results on water quality of Greifswald Bay.]CrossRefGoogle Scholar
  76. Stigge, H.-J. 1989. Der Wasserkörper Bodden und seine Hydrodynamik. Meer und Museum 5: 10–14 [The water body and the hydrodynamics of Greifswald Bay.]Google Scholar
  77. Sundby, S. 1991. Factors affecting the vertical distribution of eggs. ICES Marine Science Symposia 192: 33–38.Google Scholar
  78. Taylor, F.H.C. 1964. Life history and present status of British Columbia herring stocks. Bulletin of the Fisheries Research Board of Canada 143 81 pp.Google Scholar
  79. Tester, A.L., and J.C. Stevenson. 1948. Results of the west coast of Vancouver Island herring investigation, 1947-48. Report of British Columbia Fisheries Department 1946: 42–71.Google Scholar
  80. Urho, L. 1999. Relationship between dispersal of larvae and nursery areas in the Baltic Sea. ICES Journal of Marine Science 56: 114–121.CrossRefGoogle Scholar
  81. Von Westernhagen, H., V. Dethlefsen, and H. Rosenthal. 1979. Combined effects of cadmium, copper and lead on developing herring eggs and larvae. Helgoländer Wissenschaftliche Meeresuntersuchungen 32: 257–278.CrossRefGoogle Scholar
  82. Wootton, R.J. 1990. Ecology of teleost fishes. London: Chapman and Hall.Google Scholar
  83. Woth, K., R. Weisse, and H. Von Storch. 2006. Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected different regional climate models. Ocean Dynamics 56: 3–15.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2017

Authors and Affiliations

  1. 1.Thünen-Institute of Baltic Sea FisheriesRostockGermany
  2. 2.Institute of Hydrobiology and Fisheries ScienceUniversity of HamburgHamburgGermany

Personalised recommendations