Estuaries and Coasts

, Volume 40, Issue 6, pp 1666–1676 | Cite as

Boat Propeller Scarring of Seagrass Beds in Lower Chesapeake Bay, USA: Patterns, Causes, Recovery, and Management

  • Robert J. Orth
  • Jonathan S. Lefcheck
  • David J. Wilcox


Seagrass beds are subject to numerous anthropogenic influences, including nutrient pollution, shoreline development and modification, and overfishing. Direct human impacts on seagrass though, such as through contact with boat propellers and fishing gear, remains relatively uninvestigated. Here, we use 26 years of aerial imagery and 3 years of ground surveys to explore the degree, distribution, and recovery of scarring in seagrass beds as the result of boat propellers in lower Chesapeake Bay, USA, specifically from commercial haul seine fishing activity. We find that propeller scarring is extensive, particularly on the western shore of the Bay, where pressure from haul seining is more intense. In two areas with the most intense scarring, Browns Bay and Poquoson Flats, annual total length of scars averaged 5575 and 3206 m, respectively. Despite the considerable presence of observable scarring, an individual scar generally persisted for only 2.7 years on average, implying quick recovery, aided by the diverse reproductive habits of the two seagrasses in this region, Zostera marina and Ruppia maritima. Moreover, regulations adopted by the regulary agency responsible for protecting marine habitats in Chesapeake Bay, the Virginia Marine Resources Commission, concerning the timing of haul seining in response to these findings reduced the frequency of new scars 43% at Browns Bay and 90% at Poquoson Flats since 2003. These results demonstrate that swift and decisive management action, in cooperation with relevant science, can lead to effective conservation of underwater grasses.


Zostera marina Ruppia maritima SAV Haul seining Resource managers Management 



We greatly acknowledge the contributions of numerous staff and students who contributed to this project, especially S. Marion, J. Fishman, A. Tillman, E. Smith, K. Moore, C. Holbert, and J. Richardson. Funding was provided by the grants from the Virginia Commercial and Recreational Fishing License Fund, as well as private grants from the Allied-Signal Foundation and the Keith Campbell Foundation for the Environment. This paper is contribution no. 3594 of the Virginia Institute of Marine Science, College of William and Mary.

Supplementary material

12237_2017_239_MOESM1_ESM.docx (107 kb)
ESM 1 (DOCX 106 kb)
12237_2017_239_MOESM2_ESM.csv (1.9 mb)
ESM 2 (CSV 1915 kb)
12237_2017_239_MOESM3_ESM.r (19 kb)
ESM 3 (R 18 kb)
12237_2017_239_MOESM4_ESM.csv (5 kb)
ESM 4 (CSV 4 kb)
12237_2017_239_MOESM5_ESM.csv (176 kb)
ESM 5 (CSV 175 kb)


  1. Ailstock, M.S., D.J. Shafer, and A.D. Magoun. 2010. Effects of planting depth, sediment grain size, and nutrients on Ruppia maritima and Potamogeton perfoliatus seedling emergence and growth. Restoration Ecology 18: 574–583.CrossRefGoogle Scholar
  2. Alexandre, A., R. Santos, and E. Serrao. 2005. Effects of clam harvesting on sexual reproduction of the seagrass Zostera noltii. Marine Ecology Progress Series 298: 115–122.CrossRefGoogle Scholar
  3. Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.CrossRefGoogle Scholar
  4. Bell, S.S., M.O. Hall, S. Soffian, and K. Madley. 2002. Assessing the impact of boat propeller scars on fish and shrimp utilizing seagrass beds. Ecological Applications 12: 206–217.CrossRefGoogle Scholar
  5. Burfeind, D.D., and G.W. Stunz. 2006. The effects of boat propeller scarring intensity on nekton abundance in subtropical seagrass beds. Marine Biology 148: 953–962.CrossRefGoogle Scholar
  6. Cabaco, S., A. Alexandre, and R. Santos. 2005. Population-level effects of clam harvesting on the seagrass Zostera noltii. Marine Ecology Progress Series 298: 115–122.CrossRefGoogle Scholar
  7. Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, R.G. Raskin, P. Rutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.CrossRefGoogle Scholar
  8. Dawes, C.J., J. Andorfer, C. Rose, C. Uranowski, and N. Ehringer. 1997. Regrowth of the seagrass Thalassia testudinum into propeller scars. Aquatic Botany 59: 139–176.CrossRefGoogle Scholar
  9. De Jonge, V.N. and D.J. De Jong. 1992. Role of tide, light, and fisheries in the decline of Zostera marina L. in the Dutch Wadden Sea. Netherlands Institute for Sea Research, Publication Series No. 20, 161–176.Google Scholar
  10. Dobson, J.E., E.A. Bright, R.L. Ferguson, D.W. Field, L.L. Wood, K.D. Haddad, H. Iredale, III, J.R. Jensen, V.V. Klemas, R.J. Orth, and J.P. Thomas. 1995. NOAA Coastal change analysis program (C-CAP): guidance for regional implementation. NOAA Tech. Rep. NMFS 123. 92 pp.Google Scholar
  11. Duarte, C.M. 2003. The future of seagrass meadows. Environmental Conservation 29: 192–206.Google Scholar
  12. Duarte, C.M., J.W. Fourqurean, D. Krause-Jensen, and B. Olesen. 2006. Dynamics of seagrass stability and change. In Seagrasses: biology, ecology and conservation, ed. A.W.D. Larkum, R.J. Orth, and C.M. Duarte, 111–133. The Netherlands: Springer.Google Scholar
  13. Dunton, K.H., and S.V. Schonberg. 2002. Assessment of propeller scarring in seagrass beds on the south Texas Coast. Journal of Coastal Research SI 37: 100–110.Google Scholar
  14. Fonseca, M.S., G.W. Thayer, and A.J. Chester. 1984. Impact of scallop harvesting on eelgrass (Zostera marina) meadows: Implications for management. North American Journal of Fisheries Management 4: 286–293.CrossRefGoogle Scholar
  15. Gonzalez-Correa, J.M., J.T. Bayle, J.L. Sanchez-Lizaso, C. Valle, P. Sanchez-Jerez, and J.M. Tuiz. 2005. Recovery of deep Posidonia oceanica meadows degraded by trawling. Journal of Experimental Marine Biology and Ecology 320: 65–76.CrossRefGoogle Scholar
  16. Guillén, J.E., A.A. Ramos, L. Martinez, and J.L. Sanchez Lizaso. 1994. Anti-trawling reefs and the protection of Posidonia oceanica (L.) Delile meadows in the western Mediterranean Sea: Demand and aims. Bulletin of Marine Science 55: 645–650.Google Scholar
  17. Hendriks, I.E., S. Tenan, G. Tavecchia, N. Marba, G. Jorda, S. Deudero, E. Alvarez, and C.M. Duarte. 2013. Boat anchoring impacts coastal populations of the pen shell, the largest bivalve in the Mediterranean. Biological Conservation 160: 105–113.CrossRefGoogle Scholar
  18. Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell, T.R. Fisher, P.M. Glibert, J.D. Hagy, L.W. Harding, E.D. Houde, D.G. Kimmel, W.D. Miller, R.I.E. Newell, M.R. Roman, E.M. Smith, and J.C. Stevenson. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.CrossRefGoogle Scholar
  19. Lefcheck, J.S., S.R. Marion, A.V. Lombana, and R.J. Orth. 2016. Faunal communities are invariant to fragmentation in experimental seagrass landscapes. PloS One 11 (5): e0156550.CrossRefGoogle Scholar
  20. Lefcheck, J.S., D. J. Wilcox, R.R. Murphy, S.R. Marion, and R.J. Orth. 2017. Multiple stressors threaten the imperiled coastal foundation species, eelgrass (Zostera marina) in Chesapeake Bay, USA. Global Change Biololgy. doi: 10.1111/gcb.13623.
  21. Martin, S.R., C.P. Onuf, and K.H. Dunton. 2008. Assessment of propeller and off-road vehicle scarring in seagrass beds and wind-tidal flats of the southwestern Gulf of Mexico. Botanica Marina 51: 79–91.CrossRefGoogle Scholar
  22. McGlathery, K.J., L.K. Reynolds, L.W. Cole, R.J. Orth, S.R. Marion, and A. Schwarzschild. 2012. Recovery trajectories during state changes from bare sediment to eelgrass dominance. Marine Ecology Progress Series 448: 209–221. doi: 10.3354/meps09574.CrossRefGoogle Scholar
  23. Milazzo, M., F. Badalamenti, G. Ceccherelli, and R. Chemello. 2004. Boat anchoring on Posidonia oceanica in a marine protected area (Italy, western Mediterranean): effect of anchor types in different anchoring stages. Journal of Experimental Marine Biology and Ecology 299: L51–L62.CrossRefGoogle Scholar
  24. Moore, K.A., R.J. Orth, and J.F. Nowak. 1993. Environmental regulation of seed germination in Zostera marina L. (eelgrass) in Chesapeake Bay: Effects of light, oxygen, and sediment burial depth. Aquatic Botany 45: 79–91.CrossRefGoogle Scholar
  25. Neckles, H.A., F.T. Short, S. Barker, and B.S. Kopp. 2005. Disturbance of eelgrass, Zostera marina, by commercial mussel Mytilus edulis harvesting in Maine: dredging impacts, and habitat recovery. Marine Ecology Progress Series 285: 57–73.CrossRefGoogle Scholar
  26. Onuf, C.P. 1994. Seagrasses, dredging and light in Laguna Madre, Texas, USA. Estuarine Coastal Shelf Science 9: 75–91.CrossRefGoogle Scholar
  27. Orth, R.J. and K.A. Moore. 1982. The biology and propagation of Zostera marina, eelgrass, in the Chesapeake Bay, Virginia. Final Report, U.S. EPA Chesapeake Bay Program, Grant No. R805953 and SRAMSOE No. 265, Virginia Institute of Marine Science. l95 pp.Google Scholar
  28. Orth, R.J., and K.A. Moore. 1984. Distribution and abundance of submerged aquatic vegetation in Chesapeake Bay: an historical perspective. Estuaries 7: 531–540.CrossRefGoogle Scholar
  29. Orth, R.J., and K.A. Moore. 1988. Distribution of Zostera marina L. and Ruppia maritima L. s.L. along depth gradients in the lower Chesapeake Bay, USA. Aquatic Botany 32: 291–305.CrossRefGoogle Scholar
  30. Orth, R.J., J.R. Fishman, A. Tillman, S. Everett, and K.A. Moore. 2001. Boat scarring effects on submerged aquatic vegetation in Virginia (Year 1). Final Report Virginia Marine Resources Commission. 54 pp.Google Scholar
  31. Orth, R.J., J.R. Fishman, D.J. Wilcox, and K.A. Moore. 2002a. Identification and management of fishing gear impacts in a recovering seagrass system in the coastal bays of the Delmarva Peninsula, USA. Journal Coastal Research SI 37: 111–129.Google Scholar
  32. Orth, R.J., R.A. Batiuk, P.W. Bergstrom, and K.A. Moore. 2002b. A perspective on two decades of policies and regulations influencing the protection and restoration of submerged aquatic vegetation in Chesapeake Bay, USA. Bulletin of Marine Science 71: 1391–1403.Google Scholar
  33. Orth, R.J.T., J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. Bioscience 56: 987–996.CrossRefGoogle Scholar
  34. Orth, R.J., S.R. Marion, K.A. Moore, and D.J. Wilcox. 2010a. Eelgrass (Zostera marina L.) in the Chesapeake Bay region of mid-Atlantic Coast of the USA: challenges in conservation and restoration. Estuaries and Coasts 33: 139–150. doi: 10.1007/s12237-009-9234-0.CrossRefGoogle Scholar
  35. Orth, R.J., M.R. Williams, S.R. Marion, D.J. Wilcox, T.J.B. Carruthers, K.A. Moore, W.M. Kemp, W.C. Dennison, N. Rybicki, P. Bergstrom, and R.A. Batiuk. 2010b. Long term trends in submersed aquatic vegetation (SAV) in Chesapeake Bay, USA, related to water quality. Estuaries and Coasts 33: 1144–1163.CrossRefGoogle Scholar
  36. Orth, R.J., D.J. Wilcox, J.R. Whiting. A.K. Kenne, L. Nagey, and E.R. Smith. 2015. Distribution of submerged aquatic vegetation in the Chesapeake Bay and tributaries and Chincoteague Bay −2014. Virginia Institute of Marine Science Special Scientific Report Number 158 (
  37. Otway, N.M., and G.W. Macbeth. 1999. Physical effects of hauling on seagrass beds. FRDC Project No. 95/149 and 96/286. New South Wales Fisheries Final Report Series No. 15. ISSN 1440–3544. 86 pp.Google Scholar
  38. Patrick, C.J., and D.E. Weller. 2015. Interannual variation in submerged aquatic vegetation and its relationship to water quality in subestuaries of Chesapeake Bay. Marine Ecology Progress Series 537: 121–135.CrossRefGoogle Scholar
  39. Peterson, C.H., H.C. Summerson, and S.R. Fegley. 1987. Ecological consequences of mechanical harvesting of clams. Fishery Bulletin 85: 281–298.Google Scholar
  40. Plus, M., J.-M. Deslous-Paoli, and F. Dagault. 2003. Seagrass (Zostera marina L.) bed recolonization after anoxia-induced full mortality. Aquatic Botany 77: 121–134.CrossRefGoogle Scholar
  41. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  42. Ruhl, H.A., and N.B. Rybicki. 2010. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat. Proceedings of the National Academy of Sciences 107: 16566–16570.CrossRefGoogle Scholar
  43. Sánchez-Jerez, P., C. Barberá-Cebrian, and A.A. Ramos-Esplá. 2000. Influence of the structure of Posidonia oceanica meadows modified by bottom trawling on crustacean assemblages: Comparison of amphipods and decapods. Scientia marina. 64: 319–326.CrossRefGoogle Scholar
  44. Sargent, F.J., T.J. Leary, D.W. Crewz, and C.R. Kruer. 1995. Scarring of Florida’s seagrasses: assessment and management options. FMRI Technical Report TR-1. Florida Marine Research Institute. St. Petersburg, Florida. 37 p. plus appendices.Google Scholar
  45. Short, F.T., and S. Wyllie-Echeverria. 1996. Natural and human induced disturbance of seagrasses. Environmental Conservation 23: 17–27.CrossRefGoogle Scholar
  46. Sobocinski, K.L., R.J. Orth, M.C. Fabrizio, and R.J. Latour. 2013. Historical comparison of fish community structure in Lower Chesapeake Bay seagrass habitats. Estuaries and Coasts 36: 775–794. doi: 10.1007/s12237-013-9586-3.CrossRefGoogle Scholar
  47. Uhrin, A.V., and J.G. Holmquist. 2003. Effects of propeller scarring on macrofaunal use of the seagrass Thalassia testudinum. Marine Ecology Progress Series 250: 61–70.CrossRefGoogle Scholar
  48. Walker, D.I., R.J. Lukatelich, G. Bastyan, and A.J. McComb. 1989. Effect of boat moorings on seagrass beds near Perth, Western Australia. Aquatic Botany 36: 69–77.CrossRefGoogle Scholar
  49. Whitfield, P.E., W.J. Kenworthy, M.J. Durako, K.K. Hammerstrom, and M.F. Merello. 2004. Recruitment of Thalassia testidunum seedlings into physically disturbed seagrass beds. Marine Ecology Progress Series 267: 121–131.CrossRefGoogle Scholar
  50. Zieman, J.C. 1976. The ecological effects of physical damage from motor boats on turtle grass beds in southern Florida. Aquatic Botany 2: 127–139.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2017

Authors and Affiliations

  • Robert J. Orth
    • 1
  • Jonathan S. Lefcheck
    • 1
  • David J. Wilcox
    • 1
  1. 1.Virginia Institute of Marine ScienceCollege of William and MaryGloucester PointUSA

Personalised recommendations