Estuaries and Coasts

, Volume 40, Issue 6, pp 1732–1743 | Cite as

Effect of Maternal Size, Reproductive Season and Interannual Variability in Offspring Provisioning of Carcinus maenas in a Coastal Lagoon

  • Felisa Rey
  • M. Rosário M. Domingues
  • Pedro Domingues
  • Rui Rosa
  • María D. M. Orgaz
  • Henrique Queiroga
  • Ricardo Calado


Maternal effects and larval experience are considered the most important sources of variability in offspring phenotypes in marine invertebrates. Maternal provisioning during oogenesis is the first of a series of processes that will ultimately affect offspring phenotype and population dynamics. The keystone species of several European estuarine environments, Carcinus maenas, was used as a model to analyse the effect of female size and reproductive season on the fatty acid (FA) profile of newly extruded (stage 1) and ready-to-hatch (stage 3) embryos, as proxies for maternal investment and quality of newly hatched larvae, respectively. A total of 60 ovigerous females of two different sizes (carapace width [CW]: small CW <40 mm; large CW ≥40 mm) from Ria de Aveiro (Portugal) were sampled during three different reproductive periods: early reproductive season (ERS, late March/early April) 2012, ERS-2013 and late reproductive season (LRS; July) 2013. Maternal size was not a reliable indicator of maternal provision or larval quality at hatching. The interannual comparison (ERS-2012 vs. ERS-2013) revealed that the FA profile of stage 3 embryos was likely shaped by environmental conditions in the coastal lagoon during incubation. The seasonal comparison (ERS-2013 vs. LRS-2013) showed that embryos in the LRS had higher quality lipid content than embryos in the ERS, suggesting an increase of energetic reserves destined for reproduction in females in the LRS. Studies on maternal investment that overlook temporal variability should be interpreted with caution, especially in species inhabiting highly dynamic environments such as coastal lagoons and estuaries.


Brachyuran crabs Embryos Fatty acids Lipidomic Maternal effects Phenotype plasticity 



Felisa Rey was supported by PhD scholarships (SFRH/BD/62594/2009) funded by the Fundação para a Ciência e Tecnologia (FCT) (QREN-POPH-Tipe 4.1 – Advanced training, subsidized by the European Social Fund and National Funds MEC). The present study was funded by FEDER through COMPETE, Programa Operacional Factores de Competitividade and by national funding through FCT, within the research project NO RESET PTDC/BIA-BIC/116871/2010. RR is supported by the Investigator FCT program (IF/01373/2013). The authors are thankful to project REDE/1504/REM/2005 (that concerns the Portuguese Mass Spectrometry Network) and to the QOPNA research unit (project PEst-493 C/QUI/UI0062/2013, FCOMP-01-0124-FEDER-037296).

Supplementary material

12237_2017_235_MOESM1_ESM.doc (115 kb)
ESM 1 (DOC 115 kb)


  1. Álvarez, I., J.M. Dias, M. de Castro, N. Vaz, M.C. Sousa, and M. Gómez-Gesteira. 2013. Influence of upwelling events on the estuaries of the north-western coast of the Iberian Peninsula. Marine and Freshwater Research 64: 1123–1134. doi: 10.1071/MF12298.CrossRefGoogle Scholar
  2. Andrés, M., A. Estévez, C.G. Simeó, and G. Rotllant. 2010. Annual variation in the biochemical composition of newly hatched larvae of Maja brachydactyla in captivity. Aquaculture 310: 99–105. doi: 10.1016/j.aquaculture.2010.09.035.CrossRefGoogle Scholar
  3. Anger, K. 2001. The biology of decapod crustacean larvae. Crustacean issues, 14. Lisse: A.A. Balkema.Google Scholar
  4. AOCS. 2012. AOCS Lipid Library. American Oil Chemists’ Society. Available at Accessed 14 Feb 2017.
  5. Aued-Pimentel, S., J.H.G. Lago, M.H. Chaves, and E.E. Kumagai. 2004. Evaluation of a methylation procedure to determine cyclopropenoids fatty acids from Sterculia striata St. Hil. et Nauds seed oil. Journal of Chromatography A 1054: 235–239. doi: 10.1016/j.chroma.2004.07.090.CrossRefGoogle Scholar
  6. Baeta, A., H.N. Cabral, J.M. Neto, J.C. Marques, and M.A. Pardal. 2005. Biology, population dynamics and secondary production of the green crab Carcinus maenas (L.) in a temperate estuary. Estuarine, Coastal and Shelf Science 65: 43–52. doi: 10.1016/j.ecss.2005.05.004.CrossRefGoogle Scholar
  7. Baeta, A., H.N. Cabral, J.C. Marques, and M.A. Pardal. 2006. Feeding ecology of the green crab, Carcinus maenas (L., 1758) in a temperate estuary, Portugal. Crustaceana 79: 1181–1193.CrossRefGoogle Scholar
  8. Bartlett, M.E., and D.H. Lewis. 1970. Spectrophotometric determination of phosphate esters in the presence and absence of orthophosphate. Analytical Biochemestry 36: 159–167.CrossRefGoogle Scholar
  9. Bernardo, J. 1996. The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. American Zoologist 36: 216–236.CrossRefGoogle Scholar
  10. Bligh, E.G., and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–917.CrossRefGoogle Scholar
  11. Burgess, S.C., and D.J. Marshall. 2011. Are numbers enough? Colonizer phenotype and abundance interact to affect population dynamics. Journal of Animal Ecology 80: 681–687. doi: 10.1111/J.1365-2656.2010.01802.X.CrossRefGoogle Scholar
  12. Burgess, S.C., E.A. Treml, and D.J. Marshall. 2012. How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93: 1378–1387. doi: 10.1890/11-1656.1.CrossRefGoogle Scholar
  13. Cahu, C.L., G. Cuzon, and P. Quazuguel. 1995. Effect of highly unsaturated fatty acids, alpha-tocopherol and ascorbic acid in broodstock diet on egg composition and development of Penaeus indicus. Comparative Biochemistry and Physiology Part A: Physiology 112: 417–424.CrossRefGoogle Scholar
  14. Calado, R., and M.C. Leal. 2015. Trophic ecology of benthic marine invertebrates with bi-phasic life cycles: what are we still missing? Advances in Marine Biology 71: 1–70. doi: 10.1016/bs.amb.2015.07.001.CrossRefGoogle Scholar
  15. Calado, R., T. Pimentel, D.F.R. Cleary, G. Dionísio, C. Nunes, T.L. da Silva, M.T. Dinis, and A. Reis. 2010. Providing a common diet to different marine decapods does not standardize the fatty acid profiles of their larvae: a warning sign for experimentation using invertebrate larvae produced in captivity. Marine Biology 157: 2427–2434. doi: 10.1007/S00227-010-1507-4.CrossRefGoogle Scholar
  16. Calder, W.A. 1984. Size, function, and life history. Cambridge: Harvard University Press.Google Scholar
  17. Charmantier, G., L. Giménez, M. Charmantier-Daures, and K. Anger. 2002. Ontogeny of osmoregulation, physiological plasticity and larval export strategy in the grapsid crab Chasmagnathus granulata (Crustacea, Decapoda). Marine Ecology Progress Series 229: 185–194.CrossRefGoogle Scholar
  18. Clarke, K.R., and R.N. Gorley. 2006. PRIMER v6: user manual/tutorial. Plymouth: Primer-E Ltd..Google Scholar
  19. R Core Team. 2015. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  20. Crothers, J. 1967. The biology of the shore crab Carcinus maenas (L.) 1. The background-anatomy, growth and life history. Field Studies 2: 407–434.Google Scholar
  21. Dawirs, R.R. 1985. Temperature and larval development of Carcinus maenas (Decapoda) in the laboratory; predictions of larval dynamics in the sea. Marine Ecology Progress Series 24: 297–302.CrossRefGoogle Scholar
  22. Domingues, C.P., M.J. Almeida, J. Dubert, R. Nolasco, N. Cordeiro, S. Waap, A. Sequeira, S. Tavares, and H. Queiroga. 2011. Supply of crab larvae to an estuary in the eastern Atlantic upwelling system exhibits predictable and haphazard variation at different temporal scales. Marine Ecology Progress Series 425: 113–124. doi: 10.3354/Meps08992.CrossRefGoogle Scholar
  23. Fernández, M., C. Bock, and H.O. Pörtner. 2000. The cost of being a caring mother: the ignored factor in the reproduction of marine invertebrates. Ecology Letters 3: 487–494. doi: 10.1111/j.1461-0248.2000.00172.x.CrossRefGoogle Scholar
  24. Fischer, S., S. Thatje, M. Graeve, K. Paschke, and G. Kattner. 2009. Bioenergetics of early life-history stages of the brachyuran crab Cancer setosus in response to changes in temperature. Journal of Experimental Marine Biology and Ecology 374: 160–166. doi: 10.1016/j.jembe.2009.04.019.CrossRefGoogle Scholar
  25. Fischer, B., B. Taborsky, and H. Kokko. 2011. How to balance the offspring quality-quantity tradeoff when environmental cues are unreliable. Oikos 120: 258–270. doi: 10.1111/J.1600-0706.2010.18642.X.CrossRefGoogle Scholar
  26. Giménez, L. 2006. Phenotypic links in complex life cycles: conclusions from studies with decapod crustaceans. Integrative and Comparative Biology 46: 615–622. doi: 10.1093/Icb/Ic1010.CrossRefGoogle Scholar
  27. Giménez, L. 2010. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate. Ecology 91: 1401–1413.CrossRefGoogle Scholar
  28. Giménez, L., and K. Anger. 2001. Relationships among salinity, egg size, embryonic development, and larval biomass in the estuarine crab Chasmagnathus granulata Dana, 1851. Journal of Experimental Marine Biology and Ecology 260: 241–257.CrossRefGoogle Scholar
  29. Goudeau, M. 1983. Structure of the egg funiculus and deposition of embryonic envelopes in a crab. Tissue and Cell 15: 47–62.CrossRefGoogle Scholar
  30. Green, B.S., C. Gardner, J.D. Hochmuth, and A. Linnane. 2014. Environmental effects on fished lobsters and crabs. Reviews in Fish Biology and Fisheries 24: 613–638. doi: 10.1007/s11160-014-9350-1.CrossRefGoogle Scholar
  31. Guisande, C., and R. Harris. 1995. Effect of total organic content of eggs on hatching success and naupliar survival in the copepod Calanus helgolandicus. Limnology and Oceanography 40: 476–482. doi: 10.4319/lo.1995.40.3.0476.CrossRefGoogle Scholar
  32. Harrison, K.E. 1990. The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. Journal of Shellfish Research 19: 1–28.Google Scholar
  33. Hartnoll, R.G. 2006. Reproductive investment in Brachyura. Hydrobiologia 557: 31–40. doi: 10.1007/S10750-005-9305-6.CrossRefGoogle Scholar
  34. Herring, P.J. 1974. Size, density and lipid content of some decapod eggs. Deep Sea Research 21: 91–94.Google Scholar
  35. Hunt, J., L.F. Bussiere, M.D. Jennions, and R. Brooks. 2004. What is genetic quality? Trends in Ecology & Evolution 19: 329–333. doi: 10.1016/J.Tree.2004.03.035.CrossRefGoogle Scholar
  36. Koopman, H.N., and Z.A. Siders. 2013. Variation in egg quality in blue crabs, Callinectes sapidus, from North Carolina: does female size matter? Journal of Crustacean Biology 33: 481–487. doi: 10.1163/1937240X-00002152.CrossRefGoogle Scholar
  37. Leignel, V., J.H. Stillman, S. Baringou, R. Thabet, and I. Metais. 2014. Overview on the European green crab Carcinus spp. (Portunidae, Decapoda), one of the most famous marine invaders and ecotoxicological models. Environmental Science and Pollution Research 21: 9129–9144. doi: 10.1007/s11356-014-2979-4.CrossRefGoogle Scholar
  38. Li, S., Y. Cheng, B. Zhou, and A.H. Hines. 2012. Changes in biochemical composition of newly spawned eggs, prehatching embryos and newly hatched larvae of the blue crab Callinectes sapidus. Journal of Shellfish Research 31: 941–946. doi: 10.2983/035.031.0405.CrossRefGoogle Scholar
  39. Lyons, L.J., R.M.O. Riordan, T.F. Cross, and S.C. Culloty. 2012. Reproductive biology of the shore crab Carcinus maenas (Decapoda, Portunidae): a macroscopic and histological view. Invertebrate Reproduction & Development 56: 144–156.CrossRefGoogle Scholar
  40. Marshall, D.J., and S.G. Morgan. 2011. Ecological and evolutionary consequences of linked life-history stages in the sea. Current Biology 21: R718–R725. doi: 10.1016/J.Cub.2011.08.022.CrossRefGoogle Scholar
  41. Marshall, D.J., R.M. Allen, and A.J. Crean. 2008. The ecological and evolutionary importance of maternal effects in the sea. Oceanography and Marine Biology: An Annual Review 46: 203–250.Google Scholar
  42. Marshall, D.J., S.S. Heppell, S.B. Munch, and R.R. Warner. 2010. The relationship between maternal phenotype and offspring quality: do older mothers really produce the best offspring? Ecology 91: 2862–2873.CrossRefGoogle Scholar
  43. McLeod, L., and D.J. Marshall. 2009. Do genetic diversity effects drive the benefits associated with multiple mating? A test in a marine invertebrate. PloS One 4: e6347. doi: 10.1371/journal.pone.0006347. CrossRefGoogle Scholar
  44. Moland, E., E.M. Olsen, and N.C. Stenseth. 2010. Maternal influences on offspring size variation and viability in wild European lobster Homarus gammarus. Marine Ecology Progress Series 400: 165–173. doi: 10.3354/meps08397.CrossRefGoogle Scholar
  45. Oliveira, P.B., R. Nolasco, J. Dubert, T. Moita, and A. Peliz. 2009. Surface temperature, chlorophyll and advection patterns during a summer upwelling event off central Portugal. Continental Shelf Research 29: 759–774. doi: 10.1016/j.csr.2008.08.004.CrossRefGoogle Scholar
  46. Ouellet, P., and F. Plante. 2004. An investigation of the sources of variability in American lobster (Homarus americanus) eggs and larvae: female size and reproductive status, and interannual and interpopulation comparisons. Journal of Crustacean Biology 24: 481–495.CrossRefGoogle Scholar
  47. Pechenik, J.A. 2006. Larval experience and latent effects—metamorphosis is not a new beginning. Integrative and Comparative Biology 46: 323–333. doi: 10.1093/Icb/Icj028.CrossRefGoogle Scholar
  48. Queiroga, H., J.D. Costlow, and M.H. Moreira. 1997. Vertical migration of the crab Carcinus maenas first zoea in an estuary: implications for tidal stream transport. Marine Ecology Progress Series 149: 121–132.CrossRefGoogle Scholar
  49. Racotta, I.S., E. Palacios, and A.M. Ibarra. 2003. Shrimp larval quality in relation to broodstock condition. Aquaculture 227: 107–130. doi: 10.1016/S0044-8486(03)00498-8.CrossRefGoogle Scholar
  50. Ramirez Llodra, E. 2002. Fecundity and life-history strategies in marine invertebrates. Advances in Marine Biology 43: 87–170. doi: 10.1016/S0065-2881(02)43004-0.CrossRefGoogle Scholar
  51. Rey, F., E. Alves, T. Melo, P. Domingues, H. Queiroga, R. Rosa, M.R.M. Domingues, and R. Calado. 2015. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics. Scientific Reports 5: 14549. doi: 10.1038/srep14549.CrossRefGoogle Scholar
  52. Rey, F., A.S.P. Moreira, F. Ricardo, M.A. Coimbra, M.R.M. Domingues, P. Domingues, R. Rosa, H. Queiroga, and R. Calado. 2016. Fatty acids of densely packed embryos of Carcinus maenas reveal homogeneous maternal provisioning and no within-brood variation at hatching. Biological Bulletin 230: 120–129.CrossRefGoogle Scholar
  53. Rodrigues, M. 2012. Effects of the climatic factors and anthropogenic actions in the Ria de Aveiro. Aveiro: University of Aveiro.Google Scholar
  54. Rodrigues, M., A. Oliveira, H. Queiroga, and V. Brotas. 2012. Seasonal and diurnal water quality and ecological dynamics along a salinity gradient (Mira Channel, Aveiro Lagoon, Portugal). Procedia Environmental Sciences 13: 899–918. doi: 10.1016/j.proenv.2012.01.084.CrossRefGoogle Scholar
  55. Rosa, R., S. Morais, R. Calado, L. Narciso, and M.L. Nunes. 2003. Biochemical changes during the embryonic development of Norway lobster, Nephrops norvegicus. Aquaculture 221: 507–522. doi: 10.1016/S0044-8486(03)00117-0.CrossRefGoogle Scholar
  56. Rosa, R., R. Calado, A.M. Andrade, L. Narciso, and M.L. Nunes. 2005. Changes in amino acids and lipids during embryogenesis of European lobster, Homarus gammarus (Crustacea: Decapoda). Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 140: 241–249. doi: 10.1016/J.Cbpc.2004.10.009.CrossRefGoogle Scholar
  57. Rosa, R., R. Calado, L. Narciso, and M.L. Nunes. 2007. Embryogenesis of decapod crustaceans with different life history traits, feeding ecologies and habitats: a fatty acid approach. Marine Biology 151: 935–947. doi: 10.1007/S00227-006-0535-6.CrossRefGoogle Scholar
  58. Rotllant, G., C.G. Simeó, G. Guerao, M. Sastre, D.F.R. Cleary, R. Calado, and A. Estévez. 2014. Interannual variability in the biochemical composition of newly hatched larvae of the spider crab Maja brachydactyla (Decapoda, Majidae). Marine Ecology 35: 298–307. doi: 10.1111/maec.12081.CrossRefGoogle Scholar
  59. Sato, T., and N. Suzuki. 2010. Female size as a determinant of larval size, weight, and survival period in the coconut crab, Birgus latro. Journal of Crustacean Biology 30: 624–628. doi: 10.1651/10-3279.1.CrossRefGoogle Scholar
  60. Shanks, A.L., B.A. Grantham, and M.H. Carr. 2003. Propagule dispersal distance and the size and spacing of marine reserves. Ecological Applications 13: S159–S169.CrossRefGoogle Scholar
  61. Smith, G.G., A.J. Ritar, D. Johnston, and G.A. Dunstan. 2004. Influence of diet on broodstock lipid and fatty acid composition and larval competency in the spiny lobster, Jasus edwardsii. Aquaculture 233: 451–475. doi: 10.1016/j.aquaculture.2003.11.009.CrossRefGoogle Scholar
  62. Swiney, K.M., G.L. Eckert, and G.H. Kruse. 2013. Does maternal size affect red king crab, Paralithodes camtschaticus, embryo and larval quality? Journal of Crustacean Biology 33: 470–480. doi: 10.1163/1937240X-00002162.CrossRefGoogle Scholar
  63. Torres, G., L. Giménez, and K. Anger. 2002. Effects of reduced salinity on the biochemical composition (lipid, protein) of zoea 1 decapod crustacean larvae. Journal of Experimental Marine Biology and Ecology 277: 43–60.CrossRefGoogle Scholar
  64. Verísimo, P., C. Bernárdez, E. González-Gurriarán, J. Freire, R. Muiño, and L. Fernández. 2011. Changes between consecutive broods in the fecundity of the spider crab, Maja brachydactyla. ICES Journal of Marine Science 68: 472–478. doi: 10.1093/icesjms/fsq164.CrossRefGoogle Scholar
  65. Villegas-Ríos, D., X.A. Álvarez-Salgado, S. Piedracoba, G. Rosón, U. Labarta, and M.J. Fernández-Reiriz. 2011. Net ecosystem metabolism of a coastal embayment fertilised by upwelling and continental runoff. Continental Shelf Research 31: 400–413. doi: 10.1016/j.csr.2010.07.010.CrossRefGoogle Scholar
  66. Walker, A., S. Ando, G.D. Smith, and R.F. Lee. 2006. The utilization of lipovitellin during blue crab (Callinectes sapidus) embryogenesis. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 143: 201–208. doi: 10.1016/j.cbpb.2005.11.015.CrossRefGoogle Scholar
  67. Yamada, S.B. 2001. Global invader: the European green crab. Corvallis: Oregon State University.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2017

Authors and Affiliations

  • Felisa Rey
    • 1
  • M. Rosário M. Domingues
    • 2
  • Pedro Domingues
    • 2
  • Rui Rosa
    • 3
  • María D. M. Orgaz
    • 4
  • Henrique Queiroga
    • 1
  • Ricardo Calado
    • 1
  1. 1.Departamento de Biologia & CESAMUniversidade de AveiroAveiroPortugal
  2. 2.QOPNA, Departamento de QuímicaUniversidade de AveiroAveiroPortugal
  3. 3.MARE—Marine and Environmental Sciences Centre, Laboratório Marítimo da GuiaFaculdade de Ciências da Universidade de LisboaCascaisPortugal
  4. 4.Departamento de FísicaUniversidade de AveiroAveiroPortugal

Personalised recommendations