Advertisement

Estuaries and Coasts

, Volume 40, Issue 3, pp 822–831 | Cite as

Iron and Pyritization in Wetland Soils of the Florida Coastal Everglades

  • Paul Julian
  • Randy Chambers
  • Timothy Russell
Article

Abstract

We explored environmental factors influencing soil pyrite formation within different wetland regions of Everglades National Park. Within the Shark River Slough (SRS) region, soils had higher organic matter (62.65 ± 1.88 %) and lower bulk density (0.19 ± 0.01 g cm−3) than soils within Taylor Slough (TS; 14.35 ± 0.82 % and 0.45 ± 0.01 g cm−3, respectively), Panhandle (Ph; 15.82 ± 1.37 % and 0.34 ± 0.009 g cm−3, respectively), and Florida Bay (FB; 5.63 ± 0.19 % and 0.73 ± 0.02 g cm−3, respectively) regions. Total reactive sulfide and extractable iron (Fe) generally were greatest in soils from the SRS region, and the degree of pyritization (DOP) was higher in soils from both SRS (0.62 ± 0.02) and FB (0.52 ± 0.03) regions relative to TS and Ph regions (0.30 ± 0.02 and 0.31 ± 0.02, respectively). Each region, however, had different potential limits to pyrite formation, with SRS being Fe and sulfide limited and FB being Fe and organic matter limited. Due to the calcium-rich soils of TS and Ph regions, DOP was relatively suppressed. Annual water flow volume was positively correlated with soil DOP. Soil DOP also varied in relation to distance from water management features and soil percent organic matter. We demonstrate the potential use of soil DOP as a proxy for soil oxidation state, thereby facilitating comparisons of wetland soils under different flooding regimes, e.g., spatially or between wet years versus dry years. Despite its low total abundance, Fe plays an important role in sulfur dynamics and other biogeochemical cycles that characterize wetland soils of the Florida coastal Everglades.

Keywords

Iron Sulfur Pyrite Everglades Carbon 

Notes

Acknowledgments

We would like to thank the FCE LTER crew for field support and the anonymous peer reviewer(s) and editor(s) for their efforts and constructive review of this manuscript. This material was developed in collaboration with the FCE LTER program which is funded by National Science Foundation Grant No. DEB-9910514, Grant No. DBI-0620409, and Grant No. DEB-1237517.

References

  1. Aiken, George R., Cynthia C. Gilmour, David P. Krabbenhoft, and William Orem. 2011. Dissolved organic matter in the Florida Everglades: implications for ecosystem restoration. Critical Reviews in Environmental Science and Technology 41: 217–248. doi: 10.1080/10643389.2010.530934.CrossRefGoogle Scholar
  2. Alongi, Daniel M. 2010. Dissolved iron supply limits early growth of estuarine mangroves. Ecology 91: 3229–3241.CrossRefGoogle Scholar
  3. Bae, H., F.E. Dierberg, and A. Ogram. 2014. Syntrophs dominate sequences associated with the mercury-methylating gene hgcA in the water conservation areas of the Florida Everglades. Applied and Environmental Microbiology: AEM.01666–14. doi: 10.1128/AEM.01666-14.Google Scholar
  4. Bazante, Jose, Gary Jacobi, Helena M. Solo-Gabriele, David Reed, Sherry Mitchell-Bruker, Daniel L. Childers, Lynn Leonard, and Michael Ross. 2006. Hydrologic measurements and implications for tree island formation within Everglades National Park. Journal of Hydrology 329: 606–619. doi: 10.1016/j.jhydrol.2006.03.011.CrossRefGoogle Scholar
  5. Berner, Robert A. 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta 48: 605–615. doi: 10.1016/0016-7037(84)90089-9.CrossRefGoogle Scholar
  6. Blodau, C., C.L. Roehim, and T.R. Moore. 2002. Iron, sulfur, and dissolved carbon dynamics in a northern peatland. Archiv für Hydrobiologie 154: 561–583.CrossRefGoogle Scholar
  7. Borum, J., O. Pedersen, T.M. Greve, T.A. Frankovich, J.C. Zieman, J.W. Fourqurean, and C.J. Madden. 2005. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology 93: 148–158. doi: 10.1111/j.1365-2745.2004.00943.x.CrossRefGoogle Scholar
  8. Bosence, Daniel. 1989. Biogenic carbonate production in Florida Bay. Bulletin of Marine Science 44: 419–433.Google Scholar
  9. Bowles, Karl C., Russell A. Bell, Michael J. Ernste, James R. Kramer, Helen Manolopoulos, and Nancy Ogden. 2002. Synthesis and characterization of metal sulfide clusters for toxicological studies. Environmental Toxicology and Chemistry 21: 693–699CrossRefGoogle Scholar
  10. Burton, Edward D., Richard T. Bush, Scott G. Johnston, Leigh A. Sullivan, and Annabelle F. Keene. 2011. Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland. Geochimica et Cosmochimica Acta 75: 3434–3451. doi: 10.1016/j.gca.2011.03.020.CrossRefGoogle Scholar
  11. Canfield, Donald E. 1989. Reactive iron in marine sediments. Geochimica et Cosmochimica Acta 53: 619–632. doi: 10.1016/0016-7037(89)90005-7.CrossRefGoogle Scholar
  12. Canfield, Donald E., Robert Raiswell, and Simon H. Bottrell. 1992. The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science 292: 659–683. doi: 10.2475/ajs.292.9.659.CrossRefGoogle Scholar
  13. Carlson, Jr, R. Paul, Laura A. Yarbro, and Timothy R. Barber. 1994. Relationship of sediment sulfide to mortality of Thalassia testudinum in Florida Bay. Bulletin of Marine Science 54: 733–746.Google Scholar
  14. Chambers, R.M., and K.A. Pederson. 2006. Variation in soil phosphorus, sulfur, and iron pools among South Florida wetlands. Hydrobiologia 569: 63–70. doi: 10.1007/s10750-006-0122-3.CrossRefGoogle Scholar
  15. Chambers, R.M., and T.M. Russell. 2016. Physical and chemical characteristics of soil sediments from the Shark River slough and Taylor slough, Everglades National Park (FCE) from August 2004 to present, Grant No. DEB-1237517, DBI-0620409, and Grant No. DEB-9910514. Miami, FL: Florida Coastal Everglades Long-Term Ecological Research Program.Google Scholar
  16. Chambers, R.M., J.W. Fourqurean, S.A. Macko, and et al. 2001. Biogeochemical effects of iron availability on primary producers in a shallow marine carbonate environment. Limnology and Oceanography 46:1278–1286Google Scholar
  17. Childers, Daniel L., Joseph N. Boyer, Stephen E. Davis, Christopher J. Madden, David T. Rudnick, and Fred H. Sklar. 2006. Relating precipitation and water management to nutrient concentrations in the oligotrophic“ upside-down” estuaries of the Florida Everglades. Limnology and Oceanography 51: 602–616.CrossRefGoogle Scholar
  18. Cline, J.D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14: 454–458.CrossRefGoogle Scholar
  19. Compeau, G.C., and R. Bartha. 1985. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology 50: 498–502.Google Scholar
  20. Cook, A. 2012. Development of an integrated surface and subsurface model of Everglades National Park.Google Scholar
  21. Corstanje, R., and K.R. Reddy. 2004. Response of biogeochemical indicators to a drawdown and subsequent reflood. Journal of Environmental Quality 33: 2357–2366.CrossRefGoogle Scholar
  22. Dierberg, F.E., T.A. DeBusk, M Jerauld, and B Gu. 2014. Appendix 3B-1: Evaluation of factors influencing methylmercury accumulation in South Florida marshes. In 2014 South Florida Environmental Report. West Palm Beach, FL: South Florida Water Management District.Google Scholar
  23. Fortin, Danielle, and Sean Langley. 2005. Formation and occurrence of biogenic iron-rich minerals. Earth-Science Reviews 72: 1–19. doi: 10.1016/j.earscirev.2005.03.002.CrossRefGoogle Scholar
  24. Friese, K., K. Wendt-Potthoff, D.W. Zachmann, A. Fauville, B. Mayer, and J. Veizer. 1998. Biogeochemistry of iron and sulfur in sediments of an acidic mining Lake in Lusatia, Germany. Water, Air, and Soil Pollution 108: 231–247. doi: 10.1023/A:1005195617195.CrossRefGoogle Scholar
  25. Giblin, Anne E. 1988. Pyrite formation in marshes during early diagenesis. Geomicrobiology Journal 6: 77–97. doi: 10.1080/01490458809377827.CrossRefGoogle Scholar
  26. Giblin, Anne E., and Robert W. Howarth. 1984. Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. Limnology and Oceanography 29: 47–63. doi: 10.4319/lo.1984.29.1.0047.CrossRefGoogle Scholar
  27. Gilmour, C.C., and E.A. Henry. 1991. Mercury methylation in aquatic systems affected by acid deposition. Environmental Pollution 71: 131–169.CrossRefGoogle Scholar
  28. Gilmour, C.C., E.A. Henry, and R. Mitchell. 1992. Sulfate stimulation of mercury methylation in freshwater sediments. Environmental Science & Technology 26: 2281–2287.CrossRefGoogle Scholar
  29. Gilmour, C.C., M. Podar, A.L. Bullock, A.M. Graham, S.D. Brown, A.C. Somenahally, A. Johs, R.A. Hurt, K.L. Bailey, and D.A. Elias. 2013. Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology 47: 11810–11820. doi: 10.1021/es403075t.CrossRefGoogle Scholar
  30. Giraudoux, P. 2016. pgirmess: data analysis in ecology. R (version 1.6.4).Google Scholar
  31. Hammes, F., and W. Verstraete. 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology 1: 3–7. doi: 10.1023/A:1015135629155.CrossRefGoogle Scholar
  32. Harrison, A.F., and K.L. Bocock. 1981. Estimation of soil bulk-density from loss-on-ignition values. The Journal of Applied Ecology 18: 919. doi: 10.2307/2402382.CrossRefGoogle Scholar
  33. Julian, P. 2013. Mercury hotspot identification in water conservation area 3, Florida, USA. Annals of GIS 19: 79–88. doi: 10.1080/19475683.2013.782469.CrossRefGoogle Scholar
  34. Julian, P, G.G. Payne, and S.K. Xue. 2014. Chapter 3A: water quality in the Everglades Protection Areas. In 2014 South Florida environmental report. West Palm Beach, FL: South Florida Water Management District.Google Scholar
  35. Julian, P, G.G. Payne, and S.K. Xue. 2015. Chapter 3A: water quality in the Everglades Protection Areas. In 2015 South Florida environmental report. West Palm Beach, FL: South Florida Water Management District.Google Scholar
  36. Julian, P., A.L. Wright, and T.Z. Osborne. 2016. Iron and sulfur porewater and surface water biogeochemical interactions in a subtropical peatland. Soil Science Society of America Journal 80: 794–802. doi: 10.2136/sssaj2015.11.0418.CrossRefGoogle Scholar
  37. Keene, Annabelle F., Scott G. Johnston, Richard T. Bush, Leigh A. Sullivan, Edward D. Burton, Angus E. McElnea, Colin R. Ahern, and Bernard Powell. 2010. Effects of hyper-enriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland. Biogeochemistry 103: 263–279. doi: 10.1007/s10533-010-9461-2.CrossRefGoogle Scholar
  38. Koch, M.S., I.A. Mendelssohn, and K.L. Mckee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35: 399–408. doi: 10.4319/lo.1990.35.2.0399.CrossRefGoogle Scholar
  39. Koch, M.S., R.E. Benz, and D.T. Rudnick. 2001. Solid-phase phosphorus pools in highly organic carbonate sediments of northeastern Florida Bay. Estuarine, Coastal and Shelf Science 52: 279–291. doi: 10.1006/ecss.2000.0751.CrossRefGoogle Scholar
  40. Kotun, Kevin, and Amy Renshaw. 2014. Taylor slough hydrology: fifty years of water management 1961-2010. Wetlands 34: 9–22. doi: 10.1007/s13157-013-0441-x.CrossRefGoogle Scholar
  41. Landing, W.M., J.J. Perry Jr., J.L. Guentzel, G.A. Gill, and C.D. Pollman. 1995. Relationships between the atmospheric deposition of trace elements, major ions, and mercury in Florida: the FAMS project (1992–1993). Water, Air, and Soil Pollution 80: 343–352. doi: 10.1007/BF01189684.CrossRefGoogle Scholar
  42. Luther, W. George, and Thomas M. Church. 1988. Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh. Marine Chemistry 23: 295–309. doi: 10.1016/0304-4203(88)90100-4.
  43. Marschner, Horst. 2011. Mineral nutrition of higher plants. New York: Academic Press.Google Scholar
  44. McCormick, Paul, Susan Newman, and Les Vilchek. 2009. Landscape responses to wetland eutrophication: loss of slough habitat in the Florida Everglades, USA. Hydrobiologia 621: 105–114. doi: 10.1007/s10750-008-9635-2.CrossRefGoogle Scholar
  45. Morris, James T., Donald C. Barber, John C. Callaway, Randy Chambers, Scott C. Hagen, Charles S. Hopkinson, Beverly J. Johnson, et al. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state: sediment bulk density and ignition loss. Earth’s Future 4: 110–121. doi: 10.1002/2015EF000334.CrossRefGoogle Scholar
  46. Orem, William, Cynthia Gilmour, Donald Axelrad, David Krabbenhoft, Daniel Scheidt, Peter Kalla, Paul McCormick, Mark Gabriel, and George Aiken. 2011. Sulfur in the South Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration. Critical Reviews in Environmental Science and Technology 41: 249–288. doi: 10.1080/10643389.2010.531201.CrossRefGoogle Scholar
  47. Osborne, T.Z., and L.R. Ellis. 2015. Monitoring of phosphorus storage in Park Marsh Land Sediments: an assessment of the C-111 Spreader Canal Project. Report to National Park Service, Everglades National ParkGoogle Scholar
  48. Osborne, T.Z., G.L. Bruland, S. Newman, K.R. Reddy, and S. Grunwald. 2011. Spatial distributions and eco-partitioning of soil biogeochemical properties in the Everglades National Park. Environmental Monitoring and Assessment 183: 395–408. doi: 10.1007/s10661-011-1928-7.CrossRefGoogle Scholar
  49. Osborne, T.Z., K.R. Reddy, L.R. Ellis, N.G. Aumen, D.D. Surratt, M.S. Zimmerman, and J. Sadle. 2014. Evidence of recent phosphorus enrichment in surface soils of Taylor Slough and Northeast Everglades National Park. Wetlands 34: 37–45. doi: 10.1007/s13157-013-0381-5.CrossRefGoogle Scholar
  50. Pallud, Céline, and Philippe Van Cappellen. 2006. Kinetics of microbial sulfate reduction in estuarine sediments. Geochimica et Cosmochimica Acta 70: 1148–1162. doi: 10.1016/j.gca.2005.11.002.CrossRefGoogle Scholar
  51. Parks, Jerry M., Alexander Johs, Mircea Podar, Romain Bridou, Richard A. Hurt, Steven D. Smith, Stephen J. Tomanicek, et al. 2013. The genetic basis for bacterial mercury methylation. Science 339: 1332–1335. doi: 10.1126/science.1230667.CrossRefGoogle Scholar
  52. Peña, Edsel A., and Elizabeth H. Slate. 2006. Global validation of linear model assumptions. Journal of the American Statistical Association 101: 341–354. doi: 10.1198/016214505000000637.CrossRefGoogle Scholar
  53. Prospero, Joseph M., William M. Landing, and Michael Schulz. 2010. African dust deposition to Florida: temporal and spatial variability and comparisons to models. Journal of Geophysical Research: Atmospheres 115: D13304. doi: 10.1029/2009JD012773.CrossRefGoogle Scholar
  54. Qualls, R.G., C.J. Richardson, and L.J. Sherwood. 2001. Soil reduction-oxidation potential along a nutrient-enrichment gradient in the Everglades. Wetlands 21: 403–411. doi: 10.1672/0277-5212(2001)021[0403:SROPAA]2.0.CO;2.CrossRefGoogle Scholar
  55. Raiswell, Robert, and Robert A. Berner. 1985. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science 285: 710–724. doi: 10.2475/ajs.285.8.710.CrossRefGoogle Scholar
  56. Reddy, K.R., and R.D. DeLaune. 2008. Biogeochemistry of wetlands: science and applications. Boca Raton: CRC Press.CrossRefGoogle Scholar
  57. Rees, Gavin N., Darren S. Baldwin, Garth O. Watson, and Karina C. Hall. 2010. Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt. Science of the Total Environment 409: 134–139. doi: 10.1016/j.scitotenv.2010.08.062.CrossRefGoogle Scholar
  58. Rickard, David. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 °C: the rate equation. Geochimica et Cosmochimica Acta 61: 115–134. doi: 10.1016/S0016-7037(96)00321-3.CrossRefGoogle Scholar
  59. Rickard, David, and John W. Morse. 2005. Acid volatile sulfide (AVS). Marine Chemistry 97: 141–197. doi: 10.1016/j.marchem.2005.08.004.CrossRefGoogle Scholar
  60. Ross, M.S., J.F. Meeder, J.P. Sah, P.I. Ruiz, and G.J. Telesnicki. 2000. The Southeast Saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science 11: 101–112. doi: 10.2307/3236781.CrossRefGoogle Scholar
  61. Roychoudhury, Alakendra N., Joel E. Kostka, and Philippe Van Cappellen. 2003. Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuarine, Coastal and Shelf Science 57: 1183–1193. doi: 10.1016/S0272-7714(03)00058-1.CrossRefGoogle Scholar
  62. Rozan, Tim F., Michael E. Lassman, Douglas P. Ridge, and George W. Luther. 2000. Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature 406: 879–882CrossRefGoogle Scholar
  63. Rozan, Tim F., Martial Taillefert, Robert E. Trouwborst, Brian T. Glazer, Shufen Ma, Julian Herszage, Lexia M. Valdes, Kent S. Price, and George W. Luther III. 2002. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography 47: 1346–1354CrossRefGoogle Scholar
  64. Schoonen, M.A.A., and H.L. Barnes. 1991a. Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100 °C. Geochimica et Cosmochimica Acta 55: 1495–1504. doi: 10.1016/0016-7037(91)90122-L.CrossRefGoogle Scholar
  65. Schoonen, M.A.A., and H.L. Barnes. 1991b. Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100 °C. Geochimica et Cosmochimica Acta 55: 1505–1514. doi: 10.1016/0016-7037(91)90123-M.CrossRefGoogle Scholar
  66. Shotyk, William. 1988. Review of the inorganic geochemistry of peats and peatland waters. Earth-Science Reviews 25: 95–176. doi: 10.1016/0012-8252(88)90067-0.CrossRefGoogle Scholar
  67. Stookey, Lawrence L. 1970. Ferrozine—a new spectrophotometric reagent for iron. Analytical Chemistry 42: 779–78Google Scholar
  68. Todd, M. Jason, R. Muneepeerakul, D. Pumo, S. Azaele, F. Miralles-Wilhelm, A. Rinaldo, and I. Rodriguez-Iturbe. 2010. Hydrological drivers of wetland vegetation community distribution within Everglades National Park, Florida. Advances in Water Resources 33 . doi: 10.1016/j.advwatres.2010.04.003.Special Issue on Novel Insights in Hydrological ModellingRome-2009: 1279–1289
  69. Wang, John D., Jacobus van de Kreeke, N. Krishnan, and DeWitt Smith. 1994. Wind and tide response in Florida Bay. Bulletin of Marine Science 54: 579–601.Google Scholar
  70. Watts, Danielle L., Matthew J. Cohen, James B. Heffernan, and Todd Z. Osborne. 2010. Hydrologic modification and the loss of self-organized patterning in the ridge–slough mosaic of the Everglades. Ecosystems 13: 813–827. doi: 10.1007/s10021-010-9356-z.CrossRefGoogle Scholar
  71. White, Jeffrey R., Chad P. Gubala, Brian Fry, Jeffrey Owen, and Myron J. Mitchell. 1989. Sediment biogeochemistry of iron and sulfur in an acidic lake. Geochimica et Cosmochimica Acta 53: 2547–2559. doi: 10.1016/0016-7037(89)90127-0.CrossRefGoogle Scholar
  72. Wilhelmina, M.E., W. Van Der Welle, M. Cuppens, L.P.M. Lamers, and J.G.M. Roelofs. 2006. Detoxifying toxicants: interactions between sulfide and iron toxicity in freshwater wetlands. Environmental Toxicology and Chemistry 25.Google Scholar
  73. Zieman, Joseph, James W. Fourqurean, and Richard L. Iverson. 1989. Distribution, Abundance and Productivity of Seagrasses and Macroalgae in Florida Bay. Bulletin of Marine Science 44: 292–311Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2016

Authors and Affiliations

  1. 1.Florida Department of Environmental Protection, Office of Ecosystem ProjectsFort MyersUSA
  2. 2.University of Florida, Soil and Water SciencesFt. PierceUSA
  3. 3.College of William and Mary, W.M. Keck Environmental Field LaboratoryWilliamsburgUSA

Personalised recommendations