Advertisement

Estuaries and Coasts

, Volume 40, Issue 3, pp 842–855 | Cite as

Photosynthesis and Growth of Temperate and Sub-Tropical Estuarine Phytoplankton in a Scenario of Nutrient Enrichment under Solar Ultraviolet Radiation Exposure

  • Virginia E. Villafañe
  • Marco J. Cabrerizo
  • Gilmar S. Erzinger
  • Paula Bermejo
  • Sebastian M. Strauch
  • Macarena S. Valiñas
  • E. Walter Helbling
Article

Abstract

We compared the responses of two estuarine phytoplankton communities, one from a temperate (Chubut River estuary (CH), Argentina) and one from a sub-tropical site (Babitonga Bay (BB), Brazil), in a scenario of nutrient enrichment under solar ultraviolet radiation (UVR) exposure. Seawater samples were exposed in microcosms to two nutrients, ambient vs. enriched, and two radiation conditions, with and without UVR, and exposed to solar radiation for 4 days. We evaluated the short- (PSII photochemistry, during 90 min light and 90 min dark cycles, before and after the 4 days of acclimation) and mid-term effects (growth and taxonomic changes) of the phytoplankton communities. Before acclimation, short-term UVR effects were dominant in CH, whereas in BB, nutrient effects prevailed. Such differences were related to the previous light history of the cells and to the ambient nutrient status. After acclimation, an overall improvement of the photosynthetic performance was observed at both sites, either by reducing the relative inhibition or by increasing the recovery of the effective photochemical quantum yield. Interactive effects of UVR and nutrients on growth at CH were antagonistic, while at BB, no differences were observed between the interactive and the sum of effects. Part of the differences in the mid-term observed responses can be attributed to taxonomic changes, with the CH community dominated by diatoms throughout the experiment, but with a shift from a diatom to a flagellate-dominated community in BB. Temperature differences between both sites might have favored higher growth rates and flagellates dominance in BB under the nutrient enriched conditions.

Keywords

PSII photochemistry Global change Ultraviolet radiation Taxonomic changes Nutrients enrichment Specific growth rates 

Notes

Acknowledgments

We thank the help of C. Machado, C. Hack Gumz Correia, and R. Parizzi for their help with analysis of samples and setup of experiments in BB. We also thank the comments and suggestions of three anonymous reviewers that helped us to improve this manuscript. This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas—CONICET (PIP No. 112-201001-00228), Agencia Nacional de Promoción Científica y Tecnológica—ANPCyT (PICT 2012-0271 and PICT 2013-0208), Fundaçao de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC), National Counsel of Technological and Scientific Development (CNPQ), Universidade da Região de Joinville, and Fundación Playa Unión. We also thank Cooperativa Eléctrica y de Servicios de Rawson for providing building’ infrastructure in CH. MCJ was supported by the Ministerio de Educación, Cultura y Deporte of Spain through a “Formación de Profesorado Universitario” Ph.D. fellowship (FPU12/01243) and a short-term fellowship (EST13/0666) at EFPU. This is Contribution No. 164 of Estación de Fotobiología Playa Unión.

References

  1. Aidar, E., S.A. Gaeta, S.M.F. Gianesella-Galvão, M.B.B. Kutner, and C. Teixeira. 1993. Ecossistema costeiro subtropical: nutrients dissolvidos, fitoplâncton e clorofila-a e suas relações com as condições oceanográficas na região de Ubatuba, SP. Publicação Especial do Instituto Oceanografico Sao Paulo 10: 9–43.Google Scholar
  2. Ayoub, L.M., P. Hallock, P.G. Coble, and S.S. Bell. 2012. MAA-like absorbing substances in Florida Keys phytoplankton vary with distance from shore and CDOM: Implications for coral reefs. Journal of Experimental Marine Biology and Ecology 420-421: 91–98.CrossRefGoogle Scholar
  3. Banaszak, A.T., and M.P. Lesser. 2009. Effects of solar ultraviolet radiation on coral reef organisms. Photochemical and Photobiological Sciences 8: 1276–1294.CrossRefGoogle Scholar
  4. Barbieri, E.S., V.E. Villafañe, and E.W. Helbling. 2002. Experimental assessment of UV effects upon temperate marine phytoplankton when exposed to variable radiation regimes. Limnology and Oceanography 47: 1648–1655.CrossRefGoogle Scholar
  5. Beardall, J., C. Sobrino, and S. Stojkovic. 2009. Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochemical and Photobiological Sciences 8: 1257–1265.CrossRefGoogle Scholar
  6. Bergmann, T., T.L. Richardson, H.W. Paerl, J.L. Pinckney, and O. Schofield. 2002. Synergy of light and nutrients on the photosynthetic efficiency of phytoplankton populations from the Neuse River Estuary, North Carolina. Journal of Plankton Research 24: 923–933.CrossRefGoogle Scholar
  7. Björn, L.O., and T.M. Murphy. 1985. Computer calculation of solar ultraviolet radiation at ground level. Physiologie Vegetale 23: 555–561.Google Scholar
  8. Brandini, F.P., F. Alquini, R.B. Pereira, and R.L. Leite. 2006. Abundância e estrutura populacional da comunidade planctônica na Baía da Babitonga: Subsídios para a avaliação de impactos ambientais. In Diagnóstico Ambiental da Baía da Babitonga, ed. M.J. Cremer, P.R.D. Moralo, and T.M.N. Oliveira, 112–134. Joinville: Univille.Google Scholar
  9. Bricker, S.B., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner. 2008. Effects of nutrient enrichment in the nation's estuaries: A decade of change. Harmful Algae 8: 21–32.CrossRefGoogle Scholar
  10. Buma, A.G.J., P. Boelen, and W.H. Jeffrey. 2003. UVR-induced DNA damage in aquatic organisms. In UV effects in aquatic organisms and ecosystems, ed. E.W. Helbling, and H.E. Zagarese, 291–327. Cambridge: The Royal Society of Chemistry.CrossRefGoogle Scholar
  11. Carrillo, P., J.A. Delgado-Molina, J.M. Medina-Sánchez, F.J. Bullejos, and M. Villar-Argaiz. 2008. Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high mountain lake. Global Change Biology 14: 423–439.CrossRefGoogle Scholar
  12. Chapin, F.S. III, E.S. Zavaleta, V.T. Eviner, R.L. Naylor, P.M. Vitousek, H.L. Reynolds, D.U. Hooper, S. Lavorel, O.E. Sala, S.E. Hobbie, M.C. Mack, and S. Díaz. 2000. Consequences of changing biodiversity. Nature 405: 234–242.CrossRefGoogle Scholar
  13. Christensen, M.R., M.D. Graham, R.D. Vinebrooke, D.L. Findlay, M.J. Paterson, and M.A. Turner. 2006. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Global Change Biology 12: 2316–2322.CrossRefGoogle Scholar
  14. Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.CrossRefGoogle Scholar
  15. Cloern, J.E., S.Q. Foster, and A.E. Fleckner. 2014. Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11: 2477–2501.CrossRefGoogle Scholar
  16. Crain, C.M., K. Kroeker, and B.S. Halpern. 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters 11: 1304–1315.CrossRefGoogle Scholar
  17. Cremer, M.J., T.M.N. Oliveira, and P.R.D. Morales. 2006. Diagnóstico ambiental da Baía da Babitonga. Joinville: Editora da UNIVILLE.Google Scholar
  18. de Groot, R., M.A. Wilson, and R.M.J. Boumans. 2002. A typology for the classification, description and evaluation of ecosystem functions, goods and services. Ecological Economics 41: 393–408.CrossRefGoogle Scholar
  19. Dimier, C., S. Giovanni, T. Ferdinando, and C. Brunet. 2009. Comparative ecophysiology of the xanthophyll cycle in six marine phytoplankton species. Protist 160: 397–411.CrossRefGoogle Scholar
  20. Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin 70: 1063–1085.Google Scholar
  21. Fernandes, L.F., and F. Pereira Brandini. 2010. The potentially toxic diatom Pseudo-nitzschia H. Peragallo in the Paraná and Santa Catarina States, Southern Brazil. Iheringia Ser.Bot. 65: 47–62.Google Scholar
  22. Genty, B.E., J. Harbinson, and N.R. Baker. 1990. Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-photorespiratory conditions. Plant Physiology and Biochemistry 28: 1–10.Google Scholar
  23. Goss, R., and T. Jakob. 2010. Regulation and function of xantophyll cycle-dependent photoprotection in algae. Photosynthesis Research 106: 103–122.CrossRefGoogle Scholar
  24. Häder, D.-P., M. Lebert, M. Schuster, L. del Ciampo, E.W. Helbling, and R. McKenzie. 2007. ELDONET—A decade of monitoring solar radiation on five continents. Photochemistry and Photobiology 83: 1348–1357.CrossRefGoogle Scholar
  25. Häder, D.-P., E.W. Helbling, C.E. Williamson, and R.C. Worrest. 2011. Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochemical and Photobiological Sciences 10: 242–260.CrossRefGoogle Scholar
  26. Häder, D.P., V.E. Villafañe, and E.W. Helbling. 2014. Productivity of aquatic primary producers under global climate change. Photochemical and Photobiological Sciences 13: 1370–1392.CrossRefGoogle Scholar
  27. Häder, D.-P., C.E. Williamson, S.-A. Wängberg, M. Rautio, K.C. Rose, K. Gao, E.W. Helbling, R.P. Sinha, and R. Worrest. 2015. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochemical and Photobiological Sciences 14: 108–126.CrossRefGoogle Scholar
  28. Harrison, J.W., and R.E.H. Smith. 2013. Effects of nutrients and irradiance on PSII variable fluorescence of lake phytoplankton assemblages. Aquatic Sciences 75: 399–411.CrossRefGoogle Scholar
  29. Harrison, J.W., G.M. Silsbe, and R.H. Smith. 2015. Photophysiology and its response to visible and ultraviolet radiation in freshwater phytoplankton from contrasting light regimes. Journal of Plankton Research 37: 472–488.CrossRefGoogle Scholar
  30. Helbling, E.W., V.E. Villafañe, M.E. Ferrario, and O. Holm-Hansen. 1992. Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Marine Ecology Progress Series 80: 89–100.CrossRefGoogle Scholar
  31. Helbling, E.W., E.S. Barbieri, M.A. Marcoval, R.J. Gonçalves, and V.E. Villafañe. 2005. Impact of solar ultraviolet radiation on marine phytoplankton of Patagonia, Argentina. Photochemistry and Photobiology 81: 807–818.CrossRefGoogle Scholar
  32. Helbling, E.W., D.E. Pérez, C.D. Medina, M.G. Lagunas, and V.E. Villafañe. 2010. Phytoplankton distribution and photosynthesis dynamics in the Chubut River estuary (Patagonia, Argentina) throughout tidal cycles. Limnology and Oceanography 55: 55–65.CrossRefGoogle Scholar
  33. Helbling, E.W., A.T. Banaszak, and V.E. Villafañe. 2015. Differential responses of two phytoplankton communities from the Chubut river estuary (Patagonia, Argentina) to the combination of UVR and elevated temperature. Estuaries and Coasts 38: 1134–1146.CrossRefGoogle Scholar
  34. Hernando, M., I. Schloss, S. Roy, and G. Ferreyra. 2006. Photoacclimation to long-term ultraviolet radiation exposure of natural sub-Antarctic phytoplankton communities: Fixed surface incubations versus mixed mesocosms. Photochemistry and Photobiology 82: 923–935.CrossRefGoogle Scholar
  35. Holm-Hansen, O., and B. Riemann. 1978. Chlorophyll a determination: Improvements in methodology. Oikos 30: 438–447.CrossRefGoogle Scholar
  36. Hüner, N.P.A., G. Öquist, and F. Sarhan. 1998. Energy balance and acclimation to light and cold. Trends in Plant Science 3: 224–230.CrossRefGoogle Scholar
  37. IPCC. 2013. Climate Change 2013. The Physical Science Basis. New York, USA: Cambridge University Press.Google Scholar
  38. Kulk, G., W.H. van de Poll, R.J.W. Visser, and A.G.J. Buma. 2011. Distinct differences in photoacclimation potential between prokaryotic and eukaryotic oceanic phytoplankton. Journal of Experimental Marine Biology and Ecology 398: 63–72.CrossRefGoogle Scholar
  39. Lavaud, J., R.F. Strzepek, and P.G. Kroth. 2007. Photoprotection capacity differs among diatoms: Possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnology and Oceanography 52: 1188–1194.CrossRefGoogle Scholar
  40. Liang, Y., J. Beardall, and P. Heraud. 2006. Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Journal of Photochemistry and Photobiology, B: Biology 82: 161–172.CrossRefGoogle Scholar
  41. Litchman, E., and P.J. Neale. 2005. UV effects on photosynthesis, growth and acclimation of an estuarine diatom and cryptomonad. Marine Ecology Progress Series 300: 53–62.CrossRefGoogle Scholar
  42. Longhi, M.L., G. Ferreyra, I. Schloss, and S. Roy. 2006. Variable phytoplankton response to enhanced UV-B and nitrate addition in mesocosm experiments at three latitudes (Canada, Brazil and Argentina). Marine Ecology Progress Series 313: 57–72.CrossRefGoogle Scholar
  43. Marcoval, M.A., V.E. Villafañe, and E.W. Helbling. 2007. Interactive effects of ultraviolet radiation and nutrient addition on growth and photosynthesis performance of four species of marine phytoplankton. Journal of Photochemistry and Photobiology, B: Biology 89: 78–87.CrossRefGoogle Scholar
  44. Martins, C.C., A.C. Cabral, S.C.T. Barbosa-Cintra, A.L.L. Dauner, and F.M. Souza. 2014. An integrated evaluation of molecular marker indices and linear alkylbenzenes (LABs) to measure sewage input in a subtropical estuary (Babitonga Bay, Brazil). Environmental Pollution 188: 71–80.CrossRefGoogle Scholar
  45. Maxwell, D.P., S. Falk, and N.P.A. Huner. 1995. Photosystem II excitation pressure and development of resistance to photoinhibition. Plant Physiology 107: 687–694.CrossRefGoogle Scholar
  46. Ogbebo, F.E., and C. Ochs. 2008. Bacterioplankton and phytoplankton production rates compared at different levels of solar ultraviolet radiation and limiting nutrient ratios. Journal of Plankton Research 30: 1271–1284.CrossRefGoogle Scholar
  47. Paerl, H.W., and T.G. Otten. 2013. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microbial Ecology 65: 995–1010.CrossRefGoogle Scholar
  48. Pájaro, M., G.J. Macchi, and P. Martos. 2005. Reproductive pattern of the Patagonian stock of Argentine hake (Merluccius hubbsi. Fisheries Research 72: 97–108.CrossRefGoogle Scholar
  49. Parizzi, R.A. 2013. Variação sazonal do fitoplâncton e parâmetros ambientais no Canal do Rio Palmital, Baía da Babitonga, Sul do Brasil. Ciência e Natura 35: 41–53.Google Scholar
  50. Parizzi, R.A. 2014. Produtividade primária e dinâmica do fitoplâncton em um estuário subtropical: Uma abordagem em diferentes escalas temporais, Universidade Federal do Paraná Pontal do ParanáGoogle Scholar
  51. Parkhill, J.-P., G. Maillet, and J.J. Cullen. 2001. Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. Journal of Phycology 37: 517–529.CrossRefGoogle Scholar
  52. Pereira Camacho, F., and J.M. Souza-Conceição. 2007. Distribuição espaço-temporal da clorofila a e das variáveis ambientais em praias estuarinas da Ilha de São Francisco do Sul (Baía da Babitonga, sul do Brasil). Boletim Técnico-científico do CEPENE 15: 9–16.Google Scholar
  53. Piccolo, M.C., and G.M.E. Perillo. 1999. Estuaries of Argentina: A review. In Estuaries of South America: Their geomorphology and dynamics, ed. G.M.E. Perillo, M.C. Piccolo, and M. Pino Quivira, 101–132. Berlin: Springer.CrossRefGoogle Scholar
  54. Porra, R.J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research 73: 149–156.CrossRefGoogle Scholar
  55. Rabalais, N.N., R.E. Turner, R.J. Díaz, and D. Justic. 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Science 66: 1528–1537.CrossRefGoogle Scholar
  56. Ruban, A.V., J. Lavaud, B. Rousseau, G. Guglielmi, P. Horton, and A.-L. Etienne. 2004. The super-excess energy dissipation in diatom algae: Comparative analysis with higher plants. Photosynthesis Research 82: 165–175.CrossRefGoogle Scholar
  57. Ruggaber, A., R. Dlugi, and T. Nakajima. 1994. Modelling of radiation quantities and photolysis frequencies in the troposphere. Journal of Atmospheric Chemistry 18: 171–210.CrossRefGoogle Scholar
  58. Schreiber, U., W. Bilger, and C. Neubauer. 1994. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of photosynthesis, ed. E.-D. Schulze, and M.M. Caldwell, 49–70. Berlin: Springer.Google Scholar
  59. Skewgar, E., P.D. Boersma, G. Harris, and G. Caille. 2007. Sustainability: Anchovy fishery threat to Patagonian Ecosystem. Science 315: 45.CrossRefGoogle Scholar
  60. Sobrino, C., M.L. Ward, and P.J. Neale. 2008. Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: Effects on growth, photosynthesis, and spectral sensitivity of photoinhibition. Limnology and Oceanography 53: 494–505.CrossRefGoogle Scholar
  61. Staehr, P.A., P. Henriksen, and S. Markager. 2002. Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability. Marine Ecology Progress Series 238: 47–59.CrossRefGoogle Scholar
  62. Strickland, J.D.H., and T.R. Parsons. 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bull. 167: 1–310.Google Scholar
  63. Thomas, M.K., C.T. Kremer, C.A. Klausmeier, and E. Litchman. 2012. A global pattern of thermal adaptation in marine phytoplankton. Science 338: 1085–1088.CrossRefGoogle Scholar
  64. Tittensor, D.P., C. Mora, W. Jetz, H.K. Lotze, D. Ricard, E. Vanden Berghe, and B. Worm. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466: 1098–1101.CrossRefGoogle Scholar
  65. van de Poll, W., A.G.J. Buma, R.J. Visser, P.J. Janknegt, V.E. Villafañe, and E.W. Helbling. 2010. Xanthophyll cycle activity and photosynthesis of Dunaliella tertiolecta (Chlorophyceae) and Thalassiosira weissflogii (Bacillariophyceae) during fluctuating solar radiation. Phycologia 49: 249–259.CrossRefGoogle Scholar
  66. Villafañe, V.E., and F.M.H. Reid. 1995. Métodos de microscopía para la cuantificación del fitoplancton. In Manual de Métodos Ficológicos, ed. K. Alveal, M.E. Ferrario, E.C. Oliveira, and E. Sar, 169–185. Concepción, Chile: Universidad de Concepción.Google Scholar
  67. Villafañe, V.E., E.S. Barbieri, and E.W. Helbling. 2004. Annual patterns of ultraviolet radiation effects on temperate marine phytoplankton off Patagonia, Argentina. Journal of Plankton Research 26: 167–174.CrossRefGoogle Scholar
  68. Villafañe, V.E., A.T. Banaszak, S.D. Guendulain-García, S.M. Strauch, S.R. Halac, and E.W. Helbling. 2013. Influence of seasonal variables associated with climate change on photochemical diurnal cycles of marine phytoplankton from Patagonia (Argentina). Limnology and Oceanography 58: 203–214.CrossRefGoogle Scholar
  69. Villafañe, V.E., G.S. Erzinger, S.M. Strauch, and E.W. Helbling. 2014. Photochemical activity of PSII of tropical phytoplankton communities of Southern Brazil exposed to solar radiation and nutrient addition. Journal of Experimental Marine Biology and Ecology 459: 199–207.CrossRefGoogle Scholar
  70. Villafañe, V.E., M.S. Valiñas, M.J. Cabrerizo, and E.W. Helbling. 2015. Physio-ecological responses of Patagonian coastal marine phytoplankton in a scenario of global change: Role of acidification, nutrients and solar UVR. Marine Chemistry 177: 411–420.CrossRefGoogle Scholar
  71. Weis, E., and A. Berry. 1987. Quantum efficiency of photosystem II in relation to the energy dependent quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 894: 198–208.CrossRefGoogle Scholar
  72. Zar, J.H. 1999. Biostatistical analysis. Englewood Cliffs, NJ: Prentice Hall.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2016

Authors and Affiliations

  • Virginia E. Villafañe
    • 1
  • Marco J. Cabrerizo
    • 2
  • Gilmar S. Erzinger
    • 3
  • Paula Bermejo
    • 1
  • Sebastian M. Strauch
    • 4
  • Macarena S. Valiñas
    • 1
  • E. Walter Helbling
    • 1
  1. 1.Estación de Fotobiología Playa Unión and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)RawsonArgentina
  2. 2.Departamento de Ecología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  3. 3.Departamento de Farmácia e MedicinaUniversidade da Região de JoinvilleJoinvilleBrazil
  4. 4.Estación de Fotobiología Playa UniónRawsonArgentina

Personalised recommendations