Advertisement

Estuaries and Coasts

, Volume 40, Issue 2, pp 343–358 | Cite as

Using Satellite Observations to Characterize the Response of Estuarine Turbidity Maxima to External Forcing

  • Austin S. Hudson
  • Stefan A. Talke
  • David A. Jay
Article

Abstract

This study explores the spatial and temporal character of turbidity maxima in the Columbia River Estuary (CRE) using satellite observations. Surface reflectance data measured by the Moderate Imaging Spectroradiometer (MODIS) were calibrated against in situ measurements of surface turbidity (R 2 = 0.85 for 205 measurements). More than 1500 satellite images from 2000 to 2015 were then conditionally sampled to explore the physical processes that drive the spatial distribution of the turbidity field. We find satellite measurements are able to describe seasonal, spring–neap, and spatial features of the estuarine turbidity maxima (ETM) that are not easily observable by other means. System-wide levels of turbidity are most sensitive to river flow and spring–neap tidal range, with a weaker correlation to wind and waves. Maximum surface turbidity is observed in winter during elevated flow from coastal tributaries and remains elevated during the spring freshet of the main stem Columbia. Two ETM with asymmetric along-channel profiles are observed, one in the North Channel and another in the South Channel. Turbidity distributions migrate downstream as tidal range and river flow increase but appear to become topographically trapped near topographic holes at river kilometers 15–20. Hence, depth-sensitive circulation processes like internal asymmetry and gravitational circulation are likely important mechanisms for trapping particles and determining ETM location. These conclusions confirm the theoretical result that along-channel distributions of turbidity should have an asymmetric distribution and emphasize the role of bottom topography.

Keywords

Estuarine turbidity maxima Remote sensing MODIS Columbia River Estuary 

Notes

Acknowledgments

This work was supported by the Office of Naval Research under award N00014-13-1-0084 and the National Science Foundation, Award number 1455350. We thank USGS, NOAA, NASA, and CMOP personnel for making their data available.

References

  1. Allen, G.P., J.C. Salomon, P. Bassoullet, Y. Du Phenhoat, and C. De Grandpré. 1980. Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sedimentary Geology 26: 69–90.CrossRefGoogle Scholar
  2. Balster, C. A. and R. B. Parsons. 1968. Geomorphology and soils Willamette Valley, Oregon. Soil Conservation Service, Special Report 265.Google Scholar
  3. Benner, Patricia A., and James R. Sedell. 1997. Upper Willamette River landscape: a historic perspective. In River quality: dynamics and resotoration, eds. Antonius Laenen, and David A. Dunnette, 23–47. New York: CRC Press.Google Scholar
  4. Bricaud, Annick, André Morel, and Louis Prieur. 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limonl. Oceaonogr. 26: 43–53.CrossRefGoogle Scholar
  5. Bricaud, Annick, Marcel Babin, André Morel, and Herve Claustre. 1995. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. Journal of Geophysical Research 100(C7): 13,321–13,332.CrossRefGoogle Scholar
  6. Burchard, H., and H. Baumert. 1998. The formation of estuarine turbidity maxima due to density effects in the salt wedge. A hydrodynamic process study. Journal of Physical Oceanography 28(2): 309–321.CrossRefGoogle Scholar
  7. Burchard, H., H. Schuttelaars, and W. Geyer. 2013. Residual sediment fluxes in weakly-to-periodically stratified estuaries and tidal inlets. Journal of Physical Oceanography 43(9): 1841–1861.CrossRefGoogle Scholar
  8. Chawla, Arun, David A. Jay, Antonio M. Baptista, Michael Wilkin, and Charles Seaton. 2007. Seasonal variability and estuary–shelf interactions in circulation dynamics of a river-dominated estuary. Estuaries and Coasts 31(2): 269–288. doi: 10.1007/s12237-007-9022-7.CrossRefGoogle Scholar
  9. Chen, Zhiqiang, Chuamin Hu, and Frank Muller–Karger. 2006. Monitoring turbidity in Tampa Bay using MODIS/Aqua 250–m imagery. Remote Sensing of Environment 109: 207–220.CrossRefGoogle Scholar
  10. Chernetsky, A.S., H.M. Schuttelaars, and S.A. Talke. 2010. The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dynamics 60: 1219–1241. doi: 10.1007/s10236-010-0329-8.CrossRefGoogle Scholar
  11. Christie, M.C., K.R. Dyer, and P. Turner. 1999. Sediment flux and bed level measurements from a macro tidal mudflat. Estuarine, Coastal and Shelf Science 49: 667–688.CrossRefGoogle Scholar
  12. de Jonge, V.N., and J.E.E. van Beusekom. 1995. Wind and tide induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnology and Oceanography 40: 766–778.Google Scholar
  13. de Jonge, V.N., Henk M. Schuttelaars, Justus E.E. van Beusekom, Stefan A. Talke, and Huib E. de Swart. 2014. The influence of channel deepening on estuarine turbidity levels and dynamics, as exemplified by the Ems estuary. Estuarine, Coastal and Shelf Science 139: 46–59.CrossRefGoogle Scholar
  14. de Swart, H.E., H.M. Schuttelaars, and S.A. Talke. 2009. Initial growth of phytoplankton in turbid estuaries: a simple model. Continental Shelf Research 29(1): 136–147.CrossRefGoogle Scholar
  15. Donker, Jasper J.A., and Huib de Swart. 2013. Effects of bottom slope, flocculation and hindered settling on the coupled dynamics of currents and suspended sediment in highly turbid estuaries, a simple model. Ocean Dynamics 63: 311–327.CrossRefGoogle Scholar
  16. Doxaran, David, Jean-Marie Friodefond, and Patrice Castaing. 2003. Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by the use of reflectance ratios. Applied Optics 42: 2623–2634.CrossRefGoogle Scholar
  17. Doxaran, David, Castaing Patrice, and S.J. Lavender. 2006. Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data. International Journal of Remote Sensing 27: 2303–2321.CrossRefGoogle Scholar
  18. Doxaran, David, Jean-Marie Friodefond, Patric Castaing, and Marcel Babin. 2009. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): observations from field and MODIS satellite data. Estuarine, Coastal and Shelf Science 81: 321–332. doi: 10.1016/j.ecss.2008.11.013.CrossRefGoogle Scholar
  19. Elias, E.P.L., G. Gelfenbaum, and A.J. Van der Westhuysen. 2012. Validation of a coupled wave-flow model in a high-energy setting: the mouth of the Columbia River. Journal of Geophysical Research 117: C09011. doi: 10.1029/2012JC008105.CrossRefGoogle Scholar
  20. Fain, Annika M.V., David A. Jay, Doug J. Wilson, Phil M. Orton, and Antonio M. Baptista. 2001. Seasonal and tidal monthly patterns of particulate matter dynamics in the Columbia River Estuary. Estuaries 24: 770–786.CrossRefGoogle Scholar
  21. Festa, John F., and Donald V. Hansen. 1978. Turbidity maxima in partially mixed estuaries: a two–dimensional numerical model. Estuarine and Coastal Marine Science 7: 347–359.CrossRefGoogle Scholar
  22. Gates, Edward Breed. 1994. The holocene sedimentary framework of the lower Columbia River basin. Masters thesis, Portland State University.Google Scholar
  23. Gelfenbaum, Guy. 1983. Suspended-sediment response to semidiurnal and fortnightly tidal variations in a mesotidal estuary: Columbia River, USA. Marine Geology 52: 39–57.CrossRefGoogle Scholar
  24. Geyer, W. Rockwell. 1993. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum. Estuaries 16: 113–125.CrossRefGoogle Scholar
  25. Geyer, W. Rockwell, Jonathan D. Woodruff, and Peter Traykovski. 2001. Sediment transport and trapping in the Hudson River Estuary. Estuaries 24(5): 670–679.CrossRefGoogle Scholar
  26. Hansen, D.V., and M. Rattray Jr. 1965. Gravitational circulation in straits and estuaries. Journal of Marine Research 23: 104–122.Google Scholar
  27. Hickey, B.M., R.M. Kudela, J.D. Nash, K.W. Bruland, W.T. Peterson, P. MacCready, E.J. Lessard, D.A. Jay, N.S. Banas, A.M. Baptista, E.P. Dever, P.M. Kosro, L.K. Kilcher, A.R. Horner-Devine, E.D. Zaron, R.M. McCabe, J.O. Peterson, P.M. Orton, J. Pan, and M.C. Lohan. 2010. River influences on shelf ecosystems: introduction and synthesis. Journal of Geophysical Research 115: C00B17. doi: 10.1029/2009JC5452.CrossRefGoogle Scholar
  28. Hickson, R. E. and F. W. Rodolf. 1950. History of Columbia River jetties. In Proceedings of the first conference on coastal engineering, ed. J. W. Johnson, 283–298.Google Scholar
  29. Horner–Devine, Alexander R., David A. Jay, Phillip M. Orton, and Emily Y. Spahn. 2009. A conceptual model of the strongly tidal Columbia River plume. Journal of Marine Systems 78: 460–475. doi: 10.1016/j.jmarsys.2008.11.025.CrossRefGoogle Scholar
  30. Hu, Chuanmin, Zhiqiang Chen, Tonya D. Clayton, Peter Swarzenski, John C. Brock, Frank E. Juller, and Karger. 2004. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL. Remote Sensing of Environment 93: 423–441. doi: 10.1016/j.res.2004.08.007.CrossRefGoogle Scholar
  31. Hudson, Austin S. 2014. Applications of remote sensing to the study of estuarine physics: suspended sediment dynamics in the Columbia River Estuary. Masters thesis, Portland State University.Google Scholar
  32. Hughes, F.W., and M. Rattray Jr. 1980. Salt flux and mixing in the Columbia River Estuary. Estuarine and Coastal Marine Science 10: 479–493.CrossRefGoogle Scholar
  33. IOCCG. 2006. Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications. In Reports of the International Ocean-Colour Coordinating Group, No. 5, ed. Z.-P. Lee. Dartmouth, Canada: IOCCG.Google Scholar
  34. Jay, David A. 1984. Circulatory processes in the Columbia River Estuary. Astoria, Oregon: CREST.Google Scholar
  35. Jay, David A. 1991. Green’s law revisited: tidal long-wave propagation in channels with strong topography. Journal of Geophysical Research 96(C11): 20,585–20,598.CrossRefGoogle Scholar
  36. Jay, David A. 2010. Estuarine variability. In Contemporary issues in estuarine physics, ed. Arnoldo Valle-Levinson, 62–99. New York: Cambridge University Press.Google Scholar
  37. Jay, David A., and Jeffery D. Musiak. 1994. Particle trapping in estuarine tidal flows. Journal of Geophysical Research 99(C10): 20,445–20,461.CrossRefGoogle Scholar
  38. Jay, David A., and Jeffery D. Musiak. 1996. Internal tidal asymmetry in channel flows: origins and consequences. Coastal and Estuarine Studies 50: 211–249.CrossRefGoogle Scholar
  39. Jay, David A., and J. Dungan Smith. 1990a. Circulation, density distribution and neap–spring transitions in the Columbia River Estuary. Progress in Oceanography 25: 81–112.CrossRefGoogle Scholar
  40. Jay, David A., and J. Dungan Smith. 1990b. Residual circulation in shallow estuaries 1. Highly stratified, narrow estuaries. Journal of Geophysical Research 95(C1): 711–731.CrossRefGoogle Scholar
  41. Jay, David A., Benjamin S. Giese, and Christopher R. Sherwood. 1990. Energetics and sedimentary processes in the Columbia River Estuary. Progress in Oceanography 25: 157–174.CrossRefGoogle Scholar
  42. Jay, David A., Phillip M. Orton, David J. Kay, Annika Fain, and Antonio M. Baptista. 1999. Acoustic determination of sediment concentrations, settling velocities, horizontal transports and vertical fluxes in estuaries. Porceedings of the IEEE Sixth Working Conference: 258–263.Google Scholar
  43. Jay, David A., Phillip M. Orton, Thomas Chisholm, Douglas J. Wilson, and Annika M.V. Fain. 2007. Particle trapping in stratified estuaries: application to observations. Estuaries and Coasts 30(6): 1106–1125.CrossRefGoogle Scholar
  44. Jay, D. A., S. A. Talke, A. Hudson, M. Twardowski. 2015. Estuarine turbidity maxima revisited: instrumental approaches, remote sensing, modeling studies, and new directions. In: Developments in sedimentology: fluvial-tidal sedimentology, eds. Philip J. Ashworth, James L. Best, and Daniel R. Parsons, 49–109: Elsevier.Google Scholar
  45. Kappenberg, Jens, and Iris Grabemann. 2001. Variability of the mixing zones and estuarine turbidity maxima in the Elbe and Weser Estuaries. Estuaries 5: 699–706.CrossRefGoogle Scholar
  46. Lehner, Susanne, Ivonne Anders, and Gerhard Gayer. 2004. High resolution maps of suspended particulate matter concentration in the Geman Bight. EARSeL eProceedings 3: 118–126.Google Scholar
  47. Lyons, Joseph K., and Robert L. Beschta. 1983. Land use, floods, and channel changes: Upper Middle Fork Willamette River, Oregon (1936-1980). Water Resources Research 19(2): 463–471.CrossRefGoogle Scholar
  48. MacCready, Parker. 2007. Estuarine adjustment. Journal of Physical Oceanography 37(8): 2133–2145.Google Scholar
  49. Maritorena, Stéphane, David A. Siegel, and Alan R. Peterson. 2002. Optimization of semianalytical ocean color model for global-scale applications. Applied Optics 41(15): 2705–2714.CrossRefGoogle Scholar
  50. May, C.L., J.R. Koseff, L.V. Lucas, J.E. Cloern, and D.H. Schoellhamer. 2003. Effects of spatial and temporal variability of turbidity on phytoplankton blooms. Marine Ecology Progress Series 254: 111–128.CrossRefGoogle Scholar
  51. Meade, Robert H. 1969. Landward transport of bottom sediments in estuaries of the Atlantic coastal plain. Journal of Sedimentary Research 39(1): 222–234.Google Scholar
  52. Naik, Pradeep K., and David A. Jay. 2010. Human and climate impacts on Columbia River hydrology and salmonids. River Research and Applications 27: 1270–1276. doi: 10.1002/rra.1422.CrossRefGoogle Scholar
  53. Naik, Pradeep K., and David A. Jay. 2011. Distinguishing human and climate influences on the Columbia River: changes in mean flow and sediment transport. Journal of Hydrology 404: 259–277. doi: 10.1016/j.jhydrol.2001.04.035.CrossRefGoogle Scholar
  54. Naiman, Robert J., Timothy J. Beechie, Lee E. Benda, Dean R. Berg, Peter A. Bison, Lee H. MacDonald, Matthew D. O’Connor, Patricia L. Olson, and E. Ashley Steel. 1992. Fundamental elements of ecologically healthy watersheds in the pacific northwest coastal ecoregion. In Watershed management: balancing sustainability with environment change, ed. R.J. Naiman, 127–188. New York: Springer-Verlag.CrossRefGoogle Scholar
  55. Neukermans, G., H. Liosel, X. Meriaux, R. Astoreca, and D. McKee. 2012. In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition. Limnology and Oceanography 57(1): 124–144.CrossRefGoogle Scholar
  56. Norman, David K., Jeff C. Cederholm, and William S. Lingley Jr. 1998. Flood plains, salmon habitat, and sand and gravel mining. Washington Geology 26(2): 1–28.Google Scholar
  57. Orem, Hollis M. 1968. Discharge in the lower Columbia River basin, 1928–65. U.S. Geological Survey Circular 550.Google Scholar
  58. Palacios, L. Sherry, Tawnya D. Peterson, and Raphael M. Kudela. 2009. Development of synthetic salinity from remote sensing for the Columbia River Plume. Journal of Geophysical Research 114: C00B05. doi: 10.1029/2008JC004895.CrossRefGoogle Scholar
  59. Postma, H., and K. Kalle. 1955. Die Entstehung von Trübungszonen im Unterlauf der Flüsse, speziell im Hinblick auf die Verhältnisse in der Unterelbe. Deutsche Hydrografische Zeitschrift 8(4): 134–144.Google Scholar
  60. Pruter, A.T., and D.L. Alverson. 1972. The Columbia River Estuary and adjacent ocean waters. Seattle: University of Washington Press.Google Scholar
  61. Ralston, David K., W. Rockwell Geyer, and John C. Warner. 2012. Bathymetric controls on sediment transport in the Hudson River estuary: lateral asymmetry and frontal trapping. Journal of Geophysical Research 117: C10013. doi: 10.1029/2012JC008124.CrossRefGoogle Scholar
  62. Reed, D.J., and J. Donovan. 1994. The character and composition of the Columbia River estuarine turbidity maximum. In Changes in fluxes in estuaries: implications from science to management, eds. K.R. Dyer, and Robert J. Orth, 445–450. Fredensborg, Denmark: Olsen and Olsen.Google Scholar
  63. Roberts, W.P., and J.W. Pierce. 1976. Deposition in Upper Patuxent Estuary, Maryland, 1968-1969. Estuarine and Coastal Marine Science 4: 267–280.CrossRefGoogle Scholar
  64. Ruhl, C.A., D.H. Schoellhamer, R.P. Stumpf, and C.L. Lindsay. 2001. Combined use of remote sensing and continuous monitoring to analyse the variability of suspended–sediment concentrations in San Francisco bay, California. Estuarine, Coastal, and Shelf Science 53: 801–812.CrossRefGoogle Scholar
  65. Schoellhamer, D. H. 2001. Influence of salinity, bottom topography, and tides on locations of estuarine turbidity maxima in northern San Francisco Bay. In: Coastal and estuarine fine sediment transport processes, ed. McAnally, W.H., and Mehta, A.J., 343–357. Elsevier Science B.V.Google Scholar
  66. Sherwood, Christopher R., and Joe S. Craeger. 1990. Sedimentary geology of the Columbia River Estuary. Progress in Oceanography 25: 15–79.CrossRefGoogle Scholar
  67. Sherwood, Christopher R., David A. Jay, R. Bradford Harvey, Peter Hamilton, and Charles A. Simenstad. 1990. Historical changes in the Columbia River Estuary. Progress in Oceanography 25: 299–352.CrossRefGoogle Scholar
  68. Simenstad, Charles A., Lawrence F. Small, and C. David McIntire. 1990. Consumption processes and food web structure in the Columbia River Estuary. Progress in Oceanography 25(1–4): 271–297.Google Scholar
  69. Simpson, J.H., J. Brown, J. Matthes, and G. Allen. 1990. Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries 13(2): 125–132.CrossRefGoogle Scholar
  70. Spahn, Emily Y., Alexander R. Horner-Devine, Jonathan D. Nash, David A. Jay, Levi Kilcher. 2009. Particle resuspension in the Columbia River plume near field. Journal of Geophysical Research: Oceans 114(C2).Google Scholar
  71. Stevenson, J. Court, Michael S. Kearney, and Edward C. Pendleton. 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Marine Geology 67(3): 213–235.CrossRefGoogle Scholar
  72. Talke, S.A., and M.T. Stacey. 2003. The influence of oceanic swell on flows over an estuarine intertidal mudflat in San Francisco Bay. Estuarine, Coastal, and Shelf Science 58: 541–554.CrossRefGoogle Scholar
  73. Talke, S.A., and M.T. Stacey. 2008. Suspended sediment fluxes at an intertidal flat: shifting influence of wave, wind, tidal, and freshwater forcing. Continental Shelf Research 28(6): 710–725. doi: 10.1016/j.csr.2007.12.003.CrossRefGoogle Scholar
  74. Talke, S.A., H.E. de Swart, and H.M. Schuttelaars, 2008. An analytical model of the equilibrium distribution of suspended sediment in an estuary. In Dohmen-Janssen and Hulscher, eds: River, coastal and estuarine morphodynamics 2008, p. 403–411, London, Taylor and Francis.Google Scholar
  75. Talke, S.A., H.E. de Swart, and V.N. de Jonge. 2009a. An idealized model and systematic process study of oxygen depletion in highly turbid estuaries. Estuaries and Coasts 32(4): 602–620.CrossRefGoogle Scholar
  76. Talke, S.A., H.E. De Swart, and H.M. Schuttelaars. 2009b. Feedback between residual circulation and sediment distribution in highly turbid estuaries: an analytical model. Continental Shelf Research 29(1): 119–135. doi: 10.1016/j.csr.2007.09.002.CrossRefGoogle Scholar
  77. Templeton, W.J., and David A. Jay. 2013. Lower Columbia River sand supply and removal: estimates of two sand budget components. Journal of Waterway, Port, Coastal, and Ocean Engineering 139: 383–392.CrossRefGoogle Scholar
  78. Theisen, Arthur Albert. 1958. Distribution and characteristics of loess-like soil parent material in Northwestern Oregon. Masters Thesis, Oregon State College.Google Scholar
  79. Uncles, R.J., J.A. Stephens, and R.E. Smith. 2002. The dependence of estuarine turbidity on the tidal intrusion length, tidal range and residence time. Continental Shelf Research 22: 1835–1856.CrossRefGoogle Scholar
  80. Vermote E. F. and A. Vermeulen. 1999. MODIS algorithm technical background document, atmospheric correction algorithm: spectral reflectances (MOD09). NASA.Google Scholar
  81. Warner, John C., W. Rockwell Geyer, and James A. Lerczak. 2005. Numerical modeling of an estuary: a comprehensive skill assessment. Journal of Geophysical Research 110: C05001. doi: 10.1029/2004JC002691.CrossRefGoogle Scholar
  82. Wentz, Denis A., Bernadine A. Bonn, Kurt D. Carpenter, Stephen R. Hinkle, Mary L. Janet, Frank A. Rinella, Mark A. Uhrich, Ian R. Waite, Antonius Laenen, Kenneth E. Bencala. 1998. Water quality in the Willamette Basin, Oregon, 1991–95. U.S. Geological Survey Circular 1161.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2016

Authors and Affiliations

  • Austin S. Hudson
    • 1
  • Stefan A. Talke
    • 1
  • David A. Jay
    • 1
  1. 1.Department of Civil and Environmental EngineeringPortland State UniversityPortlandUSA

Personalised recommendations