Estuaries and Coasts

, Volume 40, Issue 1, pp 296–309 | Cite as

High-Resolution Non-Hydrostatic Modeling of Frontal Features in the Mouth of the Columbia River

  • Fengyan Shi
  • C. Chris Chickadel
  • Tian-Jian Hsu
  • James T. Kirby
  • Gordon Farquharson
  • Gangfeng Ma
Short Communication


Airborne data measured during the recent RIVET II field experiment has revealed that horizontally distributed thermal fingers regularly occur at the Mouth of Columbia River (MCR) during strong ebb tidal flows. The high-resolution, non-hydrostatic coastal model, NHWAVE, predicts salinity anomalies on the water surface which are believed to be associated with the thermal fingers. Model results indicate that large amplitude recirculation are generated in the water column between an oblique internal hydraulic jump and the North Jetty. Simulation results indicate that the billows of higher density fluid have sufficiently large amplitudes to interrupt the water surface, causing the prominent features of stripes on the surface. The current field is modulated by the frontal structures, as indicated by the vorticity field calculated from both the numerical model and data measured by an interferometric synthetic aperture radar.


Mouth of Columbia River Thermal fingers Internal hydraulic jump Non-hydrostatic modeling 



This work was supported by the National Science Foundation, Physical Oceanography Program (OCE-1334325, OCE-1435147 and OCE-1334641), and the Office of Naval Research, Littoral Geosciences and Optics Program (N00014-10-1-0188; N00014-15-1-2612) and (N00014-10-1-0932). Numerical simulations were performed on UD’s Community Cluster,, operated by UD IT group. The authors would like to acknowledge Mick Haller and David Honegger of the Oregon State University and Craig McNeil of the University of Washington for useful discussion and insight from their data, and Guy Gelfenhaum and the USGS for the detailed channel bathymetry in Fig. 1b.

Supplementary material

12237_2016_132_MOESM1_ESM.pdf (102 kb)
(PDF 102 KB)


  1. Armi, L., and D. Farmer. 1985. The internal hydraulics of the strait of Gibraltar and associated sills and narrows. Oceanologica Acta 8: 37–46.Google Scholar
  2. Baines, P.G. 2016. Internal hydraulic jumps in two-layer systems. Journal of Fluid Mechanics 787: 1–15.CrossRefGoogle Scholar
  3. Banas, N.S., P. MacCready, and B.M. Hickey. 2009. The Columbia River plume as cross-shelf exporter and along-coast barrier. Continental Shelf Research 29: 292–301. doi: 10.1016/j.csr.2008.03.011.CrossRefGoogle Scholar
  4. Baptista, A.M., Y.L. Zhang, A. Chawla, M. Zulauf, C. Seaton, E.P. Myers III, J. Kindle, M. Wilkin, M. Burla, and P.J. Turner. 2005. A cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems: Part II Application to the Columbia River. Continental Shelf Research 25: 935–972. doi: 10.1016/j.csr.2004.12.003.CrossRefGoogle Scholar
  5. Burla, M., A.M. Baptista, Y. Zhang, and S. Frolov. 2010. Seasonal and inter-annual variability of the Columbia River plume: a perspective enabled by multi-year simulation databases. Journal of Geophysical Research 115: C00B16. doi: 10.1029/2008JC004964.CrossRefGoogle Scholar
  6. Elias, E., G. Gelfenbaum, and A. Van der Westhuysen. 2012. Validation of a coupled wave-flow model in a high-energy setting: the Mouth of the Columbia River. Journal of Geophysical Research - Oceans 117: C9. doi: 10.1029/2012JC008105.CrossRefGoogle Scholar
  7. Garvine, R.W., and J.D. Monk. 1974. Frontal structure of a river plume. Journal of Geophysical Research 79: 2251–2259.CrossRefGoogle Scholar
  8. Geyer, W. R., A. C. Lavery, M. E. Scully, and J. H. Trowbridge. 2010. Mixing by shear instability at high Reynolds number. Geophysical Research Letters 37: L22607. doi: 10.1029/2010GL045272.CrossRefGoogle Scholar
  9. Giddings, S.N., D.A. Fong, S.G. Monismith, C.C. Chickadel, K.A. Edwards, W.J. Plant, B. Wang, O.B. Fringer, A.R. Horner-Devine, and A.T. Jessup. 2012. Frontogenesis and frontal progression of a Trapping-Generated estuarine convergence front and its influence on mixing and stratification. Estuaries and Coasts 35: 665–681.CrossRefGoogle Scholar
  10. Gottlieb, S., C.W. Shu, and E. Tadmor. 2001. Strong stability-preserving high-order time discretization methods. SIAM Review 43: 89–112.CrossRefGoogle Scholar
  11. Hickey, B.M., R.M. Kudela, J.D. Nash, K.W. Bruland, W.T. Peterson, P. MacCready, E.J. Lessard, D.A. Jay, N.S. Banas, A.M. Baptista, E.P. Dever, P.M. Kosro, L.K. Kilcher, A.R. Horner-Devine, E.D. Zaron, R.M. McCabe, J.O. Peterson, P.M. Orton, J. Pan, and M.C. Lohan. 2010. River influences on shelf ecosystems: introduction and synthesis. Journal of Geophysical Research 115: C00B17. doi: 10.1029/2009JC005452.CrossRefGoogle Scholar
  12. Honegger, D.A. 2016. Intratidal to Interseasonal Variability of Oblique, Internal Hydraulic Jumps at a Stratified Estuary Mouth, 2016 Ocean Sciences Meeting, abstract no. 93651, New Orleans, LA.Google Scholar
  13. Horner-Devine, A.R., C.C. Chickadel, and D.G. MacDonald. 2013. Coherent Structures and Mixing at a River Plume Front. Coherent Flow Structures at Earth’s Surface, eds. Venditti J.G., Best J.L., Church M., and Hardy R.J. Chichester, John Wiley & Sons, Ltd. doi: 10.1002/9781118527221.ch23.
  14. Hunt, J.C.R., A. Wray, and P. Moin. 1988. Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88.Google Scholar
  15. Klingbeil, K., and H. Burchard. 2013. Implementation of a direct nonhydrostatic pressure gradient discretisation into a layered ocean model. Ocean Modelling 65: 64–77. doi: 10.1016/j.ocemod.2013.02.002.CrossRefGoogle Scholar
  16. Liu, Y., P. MacCready, and B. M. Hickey. 2009. Columbia River plume patterns in summer 2004 as revealed by a hindcast coastal ocean circulation model. Geophysical Research Letters 36: L02601. doi: 10.1029/2008GL036447.Google Scholar
  17. Liu, Y., P. MacCready, B.M. Hickey, E.P. Dever, P.M. Kosro, and N.S. Banas. 2009a. Evaluation of a coastal ocean circulation model for the Columbia River plume in summer 2004. Journal of Geophysical Research 114: C00B04. doi: 10.1029/2008JC004929  10.1029/2008JC004929.
  18. Liu, Y., M.P. MacCready, and B.M. Hickey. 2009b. Columbia River plume patterns in summer 2004 as revealed by a hindcast coastal ocean circulation model. Geophysical Research Letters 36: L02601. doi: 10.1029/2008GL036447.
  19. Ma, G., F. Shi, and J.T. Kirby. 2012. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling 43-44: 22–35.CrossRefGoogle Scholar
  20. Ma, G., F. Shi, and J.T. Kirby. 2013. Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Modelling 69: 146–165.CrossRefGoogle Scholar
  21. McCabe, R.M., P. MacCready, and B.M. Hickey. 2008. Ebb-tide dynamics and spreading of a large river plume. Journal of Physical Oceanography 113: C08027.Google Scholar
  22. MacCready, P., N.S. Banas, B.M. Hickey, E.P. Dever, and Y. Liu. 2009. A model study of tide- and wind-induced mixing in the Columbia River estuary and plume. Continental Shelf Research 29: 278–291. doi: 10.1016/j.csr.2008.03.015.CrossRefGoogle Scholar
  23. MacDonald, D.G., and W.R. Geyer. 2004. Turbulent energy production and entrainment at a highly stratified estuarine front. Journal of Geophysical Research 109: C05004. doi: 10.1029/2003JC002094.CrossRefGoogle Scholar
  24. Nash, J.D., and J.N. Moum. 2005. River plumes as a source of large amplitude internal waves in the coastal ocean. Nature 437: 400–403. doi: 10.1038/nature03936.CrossRefGoogle Scholar
  25. Nash, J.D., L. Kilcher, and J.N. Moum. 2009. Structure and composition of a strongly stratified, tidally pulsed river plume. Journal of Geophysical Research 114: C00B12. doi: 10.1029/2008JC005036.CrossRefGoogle Scholar
  26. O’Donnell, J. 1993. Surface front in Estuaries: a review. Estuaries 16(1): 12–39.CrossRefGoogle Scholar
  27. Pacanowski, R.C., and G.H. Philander. 1981. Parameterization of vertical mixing in numerical models of tropical oceans. Journal of Physical Oceanography 11: 1443–1451.CrossRefGoogle Scholar
  28. Plant, W.J., R. Branch, G. Chatham, C.C. Chickadel, K. Jayes, B. Hayworth, A. Horner-Devine, A. Jessup, D.A. Fong, O.B. Fringer, S.N. Giddings, S. Monismith, and B. Wang. 2009. Remotely sensed river surface features compared with modeling and in situ measurements. Journal of Geophysical Research 114: C11002. doi: 10.1029/2009JC005440.CrossRefGoogle Scholar
  29. Reeder, D.B. 2014. Acoustical characterization of the Columbia River Estuary, 2014 AGU Fall Meeting, Nearshore Process session, San Francisco, CA, December 15 19, 2014.Google Scholar
  30. Shi, J., J.T. Kirby, G. Ma, G. Wu, C. Tong, and J. Zheng. 2015. Pressure decimation and interpolation (PDI) method for a baroclinic non-hydrostatic model, Ocean Modelling. doi: 10.1016/j.ocemod.2015.09.010.
  31. Stashchuk, N., and V. Vlasenko. 2009. Generation of internal waves by a supercritical stratified plume. Journal of Geophysical Research 114: C01004. doi: 10.1029/2008JC004851.CrossRefGoogle Scholar
  32. Toro, E.F. 2009. Riemann solvers and numerical methods for fluid dynamics: a practical introduction, third ed. New York: Springer.CrossRefGoogle Scholar
  33. Trump, C.L., and G.O. Marmorino. 2002. Mapping small-scale along-front structure using ADCP acoustic backscatter range-bin data. Estuaries 26(4A): 878–884.Google Scholar
  34. Vitousek, and O.B. Fringer. 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modelling 40(1): 72–86. doi: 10.1016/j.ocemod.2011.07.002.CrossRefGoogle Scholar
  35. Vlasenko, V., N. Stashchuk, M.E. Inall, and J.E. Hopkins. 2014. Tidal energy conversion in a global hot spot: On the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break. J. Geophys. Res. Oceans 119: 3249–3265. doi: 10.1002/2013JC009708.CrossRefGoogle Scholar
  36. Wang, B., O.B. Fringer, S.N. Giddings, and D.A. Fong. 2009. High resolution simulations of a macrotidal estuary using SUNTANS. Ocean Modelling 26: 60–85. doi: 10.1016/j.ocemod.2008.08.006.CrossRefGoogle Scholar
  37. Warner, J.C., C.R. Sherwood, R.P. Signell, C. Harris, and H.G. Arango. 2008. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers and Geosciences 34: 1284–1306.CrossRefGoogle Scholar
  38. Zhang, Y.L., and A.M. Baptista. 2008. A semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation with hybrid vertical coordinates. Ocean Modelling 21(3–4): 71–96. doi: 10.1016/j.ocemod.2007.11.005.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2016

Authors and Affiliations

  • Fengyan Shi
    • 1
  • C. Chris Chickadel
    • 2
  • Tian-Jian Hsu
    • 1
  • James T. Kirby
    • 1
  • Gordon Farquharson
    • 2
  • Gangfeng Ma
    • 3
  1. 1.Center for Applied Coastal Research, Department of Civil and Environmental EngineeringUniversity of DelawareNewarkUSA
  2. 2.Applied Physics LaboratoryUniversity of WashingtonSeattleUSA
  3. 3.Department of Civil and Environmental EngineeringOld Dominion UniversityNorfolkUSA

Personalised recommendations