Advertisement

Estuaries and Coasts

, Volume 40, Issue 1, pp 121–133 | Cite as

Efficacy of Coagulants and Ballast Compounds in Removal of Cyanobacteria (Microcystis) from Water of the Tropical Lagoon Jacarepaguá (Rio de Janeiro, Brazil)

  • Leonardo de MagalhãesEmail author
  • Natália Pessoa Noyma
  • Luciana Lima Furtado
  • Maíra Mucci
  • Frank van Oosterhout
  • Vera L. M. Huszar
  • Marcelo Manzi Marinho
  • Miquel Lürling
Article

Abstract

Eutrophication is considered the most important water quality problem in freshwaters and coastal waters worldwide promoting frequent occurrence of blooms of potentially toxic cyanobacteria. Removal of cyanobacteria from the water column using a combination of coagulant and ballast is a promising technique for mitigation and an alternative to the use of algaecides. In laboratory, we tested experimentally the efficiency of two coagulants, polyaluminium chloride (PAC) and chitosan (made of shrimp shells), alone and combined with two ballasts: red soil (RS) and the own lagoon sediment, to remove natural populations of cyanobacteria, from an urban brackish coastal lagoon. PAC was a very effective coagulant when applied at low doses (≤8 mg Al L−1) and settled the cyanobacteria, while at high doses (≥16 mg Al L−1) large flocks aggregated in the top of test tubes. In contrast, chitosan was not able to form flocks, even in high doses (>16 mg L−1) and did not efficiently settle down cyanobacteria when combined with ballast. The RS itself removed 33–47 % of the cyanobacteria. This removal was strongly enhanced when combined with PAC in a dose-dependent matter; 8 mg Al L−1 was considered the best dose to be applied. The lagoon sediment alone did not promote any settling of cyanobacteria but removal was high when combined with PAC. Combined coagulant and ballast seems a very efficient, cheap, fast and safe curative measure to lessen the harmful cyanobacteria bloom nuisance in periods when particularly needed, such as around the 2016 Olympics in Jacarepaguá Lagoon.

Keywords

Bloom control Chitosan Cyanobacteria Eutrophication Mitigation PAC 

Notes

Acknowledgments

This study was sponsored by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasil, through a Science without Borders Grant, SwB (400408/2014-7) and by Fundação de Apoio à Pesquisa do Estado do Rio de Janeiro, FAPERJ, Brasil (111.267/2014). L. De Magalhães PhD scholarship was funded by Federal Government of Brazil, Ministry of Education, through CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Ministério da Educação). V.Huszar was partially supported by CNPq (309700/2013-2). M. Mucci PhD scholarship was funded by SwB/CNPq (201328/2014-3). This study was conducted under the flag of the CAPES (Brazil)/NUFFIC (The Netherlands) project 045/12.

References

  1. Anderson, D.M., A.D. Cembella, and G.M. Hallegraeff. 2012. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science 4: 143–176.CrossRefGoogle Scholar
  2. Barrington, D.J., E.S. Reichwaldt, and A. Ghadouani. 2013. The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecological Engineering 50: 86–94.CrossRefGoogle Scholar
  3. Chen, G., Zhao, L., Qi, Y., and Cui, Y. L. 2014. Chitosan and its derivatives applied in harvesting microalgae for biodiesel production. Journal of Nanomaterials.Google Scholar
  4. Chow, C.W., M. Drikas, J. House, M.D. Burch, and R. Velzeboer. 1999. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Research 33(15): 3253–3262.CrossRefGoogle Scholar
  5. Cooke, G.D., E.B. Welch, S. Peterson, and S.A. Nichols. 2005. Restoration and management of lakes and reservoirs. Boca Raton: CRC press.Google Scholar
  6. De Julio, M., D.A. Fioravante, T.S. De Julio, F.I. Oroski, and N.J.D. Graham. 2010. A methodology for optimising the removal of cyanobacteria cells from a Brazilian eutrophic water. Brazilian Journal of Chemical Engineering 27(1): 113–126.CrossRefGoogle Scholar
  7. de la Morales, J., J. Noiie, and G. Picard. 1985. Harvesting marine microalgae species by chitosan flocculation. Aquacultural Engineering 4: 257–270.CrossRefGoogle Scholar
  8. Divakaran, R., and V.N. Sivasankara Pillai. 2002. Flocculation of algae using chitosan. Journal of Applied Phycology 14: 419–422.CrossRefGoogle Scholar
  9. Drikas, M., G. Newcombe, and B. Nicholson. 2001. Water treatment options for cyanobacteria and their toxins. Proceedings Water Quality Technology Conf:2006–2033.Google Scholar
  10. Driscoll, C.T., and W.D. Schecher. 1990. The chemistry of aluminum in the environment. Environmental Geochemistry and Health 12(1–2): 28–49.CrossRefGoogle Scholar
  11. Esteves, F.A., A. Caliman, J.M. Santangelo, R.D. Guariento, V.F. Farjalla, and R.L. Bozelli. 2008. Neotropical coastal lagoons: an appraisal of their biodiversity, functioning, threats and conservation management. Brazilian Journal of Biology 68(4 Suppl): 967–981.CrossRefGoogle Scholar
  12. Gao, L., X. Pan, D. Zhang, S. Mu, D.-J. Lee, and U. Halik. 2015. Extracellular polymeric substances buffer against the biocidal effect of H2O2 on the bloom-forming cyanobacterium Microcystis aeruginosa. Water Research 69: 51–58.CrossRefGoogle Scholar
  13. Gebbie, P. 2001. Using polyaluminium coagulants in water treatment. 64th Annual Water Industry Engineers and Operators Conference:39–47.Google Scholar
  14. Gensemer, R.W., and R.C. Playle. 1999. The bioavailability and toxicity of aluminum in aquatic environments. Critical Reviews in Environmental Science and Technology 29(4): 315–450.CrossRefGoogle Scholar
  15. Gomes, A.M.A., P.L. Sampaio, A. Ferrão-Filho, V. Magalhães, M.M. Marinho, A.C. Pimentel de Oliveira, V. Barbosa dos Santos Domingos, P. Azevedo, and M.F.O. Sandra. 2009. Florações de cianobactérias tóxicas em uma lagoa costeira hipereutrófica do Rio de Janeiro/RJ (Brasil) e suas consequências para saúde humana. Oecologia Brasiliensis 13(2): 329–345.Google Scholar
  16. Granados, M.R., F.G. Acién, C. Gómez, J.M. Fernández-Sevilla, and E. Molina Grima. 2012. Evaluation of flocculants for the recovery of freshwater microalgae. Bioresource Technology 118: 102–110.CrossRefGoogle Scholar
  17. Heisler, J., P.M. Glibert, J.M. Burkholder, D.M. Anderson, W. Cochlan, C. Dennison, Q. Dortch, C.J. Gobler, C.A. Heil, E. Humphries, A. Lewitus, R. Magnien, H.G. Marshallm, K. Sellner, D.A. Stockwell, D.K. Stoecker, and M. Suddleson. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8: 3–13.CrossRefGoogle Scholar
  18. Jančula, D., and B. Maršálek. 2011. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 85(9): 1415–1422.CrossRefGoogle Scholar
  19. Jeppesen, E., P. Kristensen, J.P. Jensen, M. Søndergaard, E. Mortensen, and T. Lauridsen. 1991. Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: duration, regulating factors and methods for overcoming resilience. Memorie dell’Istituto Italiano di Idrobiologia 48: 127–148.Google Scholar
  20. Kennish, M.J. 2002. Environmental threats and environmental future of estuaries. Environmental Conservation 29(1): 78–107.CrossRefGoogle Scholar
  21. Kennish, M.J., M.J. Brush, and K.A. Moore. 2014. Drivers of change in shallow coastal photic systems: an introduction to a special issue. Estuaries and Coasts 37(Suppl 1): S3–S19.CrossRefGoogle Scholar
  22. Li, L., and G. Pan. 2013. A universal method for flocculating harmful algal blooms in marine and fresh waters using modified sand. Environmental Science & Technology 47(9): 4555–4562.CrossRefGoogle Scholar
  23. Li, H., and G. Pan. 2015. Simultaneous removal of harmful algal blooms and microcystins using microorganism- and chitosan-modified local soil. Environmental Science and Technology 49(10): 6249–6256.CrossRefGoogle Scholar
  24. Lürling, M., and F. van Oosterhout. 2013. Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation. Water Research 47(17): 6527–6537.CrossRefGoogle Scholar
  25. Lürling, M., D. Meng, and E.J. Faassen. 2014. Effects of hydrogen peroxide and ultrasound on biomass reduction and toxin release in the cyanobacterium, Microcystis aeruginosa. Toxins 6(12): 3260–3280.CrossRefGoogle Scholar
  26. Magalhães, V.F., R.M. Soares, and S.M.F.O. Azevedo. 2001. Microcystin contamination in fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk. Toxicon 39: 1077–1085.CrossRefGoogle Scholar
  27. Matthijs, H.C.P., P.M. Visser, B. Reeze, J. Meeuse, P.C. Slot, G. Wijn, R. Talens, and J. Huisman. 2012. Selective suppression of harmful cyanobacteria in an entire lake withhydrogen peroxide. Water Research 46: 1460–1472.CrossRefGoogle Scholar
  28. Merel, S., D. Walker, R. Chicana, S. Snyder, E. Baurès, and O. Thomas. 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International 59: 303–327.CrossRefGoogle Scholar
  29. Noyma, N., L. de Magalhães, L. Lima Furtado, M. Mucci, F. van Oosterhout, V.L.M. Huszar, M.M. Marinho, and M. Lürling. 2016. Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculents and phosphorus adsorbing natural soil and modified clay. Water Research 97: 26–38. doi: 10.1016/j.watres.2015.11.057.CrossRefGoogle Scholar
  30. Nürnberg, G.K. 1996. Trophic state of clear and colored, soft-and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake and Reservoir Management 12(4): 432–447.CrossRefGoogle Scholar
  31. Paerl, H.W., N.S. Hall, B.L. Peierls, and K.L. Rossignol. 2014. Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuaries and Coasts 37: 243–258.CrossRefGoogle Scholar
  32. Pan, G., M.M. Zhang, H. Chen, H. Zou, and H. Yan. 2006a. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environmental Pollution 141(2): 195–200.CrossRefGoogle Scholar
  33. Pan, G., H. Zou, H. Chen, and X. Yuan. 2006b. Removal of harmful cyanobacterial blooms in Taihu Lake using local soils III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environmental Pollution 141(2): 206–212.CrossRefGoogle Scholar
  34. Pan, G., J. Chen, and D.M. Anderson. 2011a. Modified local sands for the mitigation of harmful algal blooms. Harmful Algae 10(4): 381–387.CrossRefGoogle Scholar
  35. Pan, G., B. Yang, D. Wang, H. Chen, B.H. Tian, M.L. Zhang, X.Z. Yuan, and J. Chen. 2011b. In-lake algal bloom removal and submerged vegetation restoration using modified local soils. Ecological Engineering 37(2): 302–308.CrossRefGoogle Scholar
  36. Pan, G., L. Dai, L. Li, L. He, H. Li, L. Bi, and R.D. Gulati. 2012. Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes. Environmental Science & Technology 46(9): 5077–5084.CrossRefGoogle Scholar
  37. Qun, G., and W. Ajun. 2006. Effects of molecular weight, degree of acetylation and ionic strength on surface tension of chitosan in dilute solution. Carbohydrate Polymers 64: 29–36.CrossRefGoogle Scholar
  38. Renault, F., B. Sancey, P.M. Badot, and G. Crini. 2009. Chitosan for coagulation/flocculation processes—an eco-friendly approach. European Polymer Journal 45(5): 1337–1348.CrossRefGoogle Scholar
  39. Sengco, M.R., and D.M. Anderson. 2004. Controlling harmful algal blooms through clay flocculation. The Journal of Eukaryotic Microbiology 51(2): 169–172.CrossRefGoogle Scholar
  40. Smith, V.H., and D.W. Schindler. 2009. Eutrophication science: where do we go from here? Trends in Ecology & Evolution 24(4): 201–207.CrossRefGoogle Scholar
  41. Søndergaard, M., J.P. Jensen, and E. Jeppesen. 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408(409): 145–152.CrossRefGoogle Scholar
  42. Stumm, W., and J. Morgan. 1996. Aquatic chemistry, chemical equilibra and rates in natural waters. Environmental Science and Technology Series.Google Scholar
  43. Tripathy, T., and B.R. De. 2006. Flocculation: a new way to treat the waste water. Journal of Physical Sciences 10: 93–127.Google Scholar
  44. Uhelingher, V. 1964. Étude statistique dês méthodes de dénobrement planctonique. Archive Science 77(2): 121–123.Google Scholar
  45. Utermöhl, H. 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen der Internationalen Vereinigung der Theoretischen und Angewandten Limnologie 9: 1–38.Google Scholar
  46. Vandamme, D., I. Foubert, and K. Muylaert. 2013. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology 31(4): 233–239.CrossRefGoogle Scholar
  47. Verspagen, J.M.H., P.M. Visser, and J. Huisman. 2006. Aggregation with clay causes sedimentation of the buoyant cyanobacterium Microcystis. Aquatic Microbial Ecology 44: 165–174.CrossRefGoogle Scholar
  48. Verweij, W. 2015. CHEAQS Next – Chemical Equilibria in Aquatic Systems, version P2015.3, http://www.cheaqs.eu/.
  49. Waajen, G., F. Van Oosterhout, G. Douglas, and M. Lürling. 2016. Management of eutrophication in Lake De Kuil (The Netherlands) using combined flocculant—Lanthanum modified bentonite treatment. Water Research 97: 83–95. doi: 10.1016/j.watres.2015.11.034.CrossRefGoogle Scholar
  50. Wang, Z., D. Li, H. Qin, and Y. Li. 2012. An integrated method for removal of harmful cyanobacterial blooms in eutrophic lakes. Environmental Pollution 160: 34–41.CrossRefGoogle Scholar
  51. Wauer, G., H.J. Heckemann, and R. Koschel. 2004. Analysis of toxic aluminium species in natural waters. Microchimica Acta 146: 149–154.CrossRefGoogle Scholar
  52. Zou, H., G. Pan, H. Chen, and X. Yuan. 2006. Removal of cyanobacterial blooms in Taihu Lake using local soils II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environmental Pollution 141(2): 201–205.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2016

Authors and Affiliations

  • Leonardo de Magalhães
    • 1
    Email author
  • Natália Pessoa Noyma
    • 1
  • Luciana Lima Furtado
    • 1
  • Maíra Mucci
    • 2
  • Frank van Oosterhout
    • 2
  • Vera L. M. Huszar
    • 3
  • Marcelo Manzi Marinho
    • 1
  • Miquel Lürling
    • 2
    • 4
  1. 1.Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant BiologyUniversity of Rio de Janeiro StateRio de JaneiroBrazil
  2. 2.Aquatic Ecology & Water Quality Management Group, Department of Environmental SciencesWageningen UniversityWageningenThe Netherlands
  3. 3.National MuseumFederal University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands

Personalised recommendations