Estuaries and Coasts

, Volume 39, Issue 6, pp 1651–1668 | Cite as

Assessment of Submarine Groundwater Discharge (SGD) as a Source of Dissolved Radium and Nutrients to Moorea (French Polynesia) Coastal Waters

  • Karen L. Knee
  • Elizabeth D. Crook
  • James L. Hench
  • James J. Leichter
  • Adina Paytan
Article

Abstract

Previous work has documented large fluxes of freshwater and nutrients from submarine groundwater discharge (SGD) into the coastal waters of a few volcanic oceanic islands. However, on the majority of such islands, including Moorea (French Polynesia), SGD has not been studied. In this study, we used radium (Ra) isotopes and salinity to investigate SGD and associated nutrient inputs at five coastal sites and Paopao Bay on the north shore of Moorea. Ra activities were highest in coastal groundwater, intermediate in coastal ocean surface water, and lowest in offshore surface water, indicating that high-Ra groundwater was discharging into the coastal ocean. On average, groundwater nitrate and nitrite (N + N), phosphate, ammonium, and silica concentrations were 12, 21, 29, and 33 times greater, respectively, than those in coastal ocean surface water, suggesting that groundwater discharge could be an important source of nutrients to the coastal ocean. Ra and salinity mass balances indicated that most or all SGD at these sites was saline and likely originated from a deeper, unsampled layer of Ra-enriched recirculated seawater. This high-salinity SGD may be less affected by terrestrial nutrient sources, such as fertilizer, sewage, and animal waste, compared to meteoric groundwater; however, nutrient-salinity trends indicate it may still have much higher concentrations of nitrate and phosphate than coastal receiving waters. Coastal ocean nutrient concentrations were virtually identical to those measured offshore, suggesting that nutrient subsidies from SGD are efficiently utilized.

Keywords

Submarine groundwater discharge Volcanic islands Moorea Nutrients Radium 

Supplementary material

12237_2016_108_MOESM1_ESM.xlsx (39 kb)
ESM 1(XLSX 39 kb)

References

  1. Baker, D.M., S.E. MacAvoy, and K. Kim. 2007. Relationship between water quality, δ15N, and aspergillosis of Caribbean Sea fan corals. Marine Ecology Progress Series 343: 123–130.CrossRefGoogle Scholar
  2. Basu, A.R., S.B. Jacobson, R.J. Poreda, C.B. Dowling, and P.K. Aggarwal. 2001. Large groundwater strontium flux to the oceans from the Bengal Basin and the marine strontium isotope record. Science 293: 1470–1473.CrossRefGoogle Scholar
  3. Blanco, A.C., A. Watanabe, K. Nadaoka, S. Motooka, E.C. Herrera, and T. Yamamoto. 2011. Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef. Marine Pollution Bulletin 62: 770–785.CrossRefGoogle Scholar
  4. Boutillier, S., and T. Duane. 2006. Land use planning to promote marine conservation of coral reef ecosystems in Moorea, French Polynesia. University of California, Berkeley, Department of Landscape Architecture and Environmental Planning, Pacific Rim Research Program. Accessed Aug. 5, 2014 at http://escholarship.org/uc/item/10f3q5p4.
  5. Bruno, J.F., L.E. Petes, C.D. Harvell, and A. Hettinger. 2003. Nutrient enrichment can increase the severity of coral disease. Ecology Letters 6: 1056–1061.CrossRefGoogle Scholar
  6. Burnett, W.C., and H. Dulaiova. 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity 69: 21–35.CrossRefGoogle Scholar
  7. Burnett, W.C., and H. Dulaiova. 2006. Radon as a tracer of submarine groundwater discharge into a boat basin in Donnalucata, Sicily. Continental Shelf Research 26: 862–873.Google Scholar
  8. Burnett, W.C., M. Taniguchi, and J. Oberdorfer. 2001. Measurement and significance of the direct discharge of groundwater into the coastal zone. Journal of Sea Research 46: 109–116.CrossRefGoogle Scholar
  9. Burnett, W.C., G. Wattayakorn, M. Taniguchi, H. Dulaiova, P. Sojisuporn, S. Rungsupa, and T. Ishitobi. 2007. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand. Continental Shelf Research 27: 176–190.CrossRefGoogle Scholar
  10. Charette, M.A., and M.C. Allen. 2006. Precision ground water sampling in coastal aquifers using a direct-push, shielded-screen well-point system. Groundwater Monitoring and Remediation 26(2): 87–93.Google Scholar
  11. Chen, W., Q. Liu, C.-A. Huh, M. Dai, and Y.-C. Miao. 2010. Signature of the Mekong River plume in the western South China Sea revealed by radium isotopes. Journal of Geophysical Research 115: C12002.CrossRefGoogle Scholar
  12. Coles, S.L., and P.L. Jokiel. 1992. Effects of salinity on coral reefs. In Pollution in tropical aquatic systems, eds. D. Connell, and D. Hawker, 147–166. Boca Raton: CRC Press.Google Scholar
  13. Crotwell, A.M., and W.S. Moore. 2003. Nutrient and radium fluxes from submarine groundwater discharge to Port Royal Sound, South Carolina. Aquatic Geochemistry 9: 191–208.CrossRefGoogle Scholar
  14. De Sieyes, N.R., K.M. Yamahara, B.A. Layton, E.H. Joyce, and A.B. Boehm. 2008. Submarine discharge of nutrient-enriched fresh groundwater at Stinson Beach, California is enhanced during nearp tides. Limnology and Oceanography 53: 1434–1445.CrossRefGoogle Scholar
  15. Duarte, T.K., H.F. Hemond, D. Frankel, and S. Frankel. 2006. Assessment of submarine groundwater discharge by handheld aerial infrared imagery: case study of Kaloko fishpond and bay, Hawai’i. Limnology and Oceanography: Methods 4: 227–236.CrossRefGoogle Scholar
  16. Fabricius, K.E. 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin 50: 125–146.CrossRefGoogle Scholar
  17. Freeze, R.A., and J.A. Cherry. 1979. Groundwater. Englewood Cliffs, NJ, USA: Prentice-Hall.Google Scholar
  18. Garcia-Solsona, E., J. Garcia-Orellana, P. Masqué, and H. Dulaiova. 2008. Uncertainties associated with 223Ra and 224Ra measurements in water via a delayed coincidence counter (RaDeCC). Marine Chemistry 109: 198–219.CrossRefGoogle Scholar
  19. Garrison, G., C.R. Glenn, and G.R. McMurtry. 2003. Measurement of submarine groundwater discharge in Kahana Bay, O′ahu, Hawai’i. Limnology and Oceanography 48: 920–928.CrossRefGoogle Scholar
  20. Giambelluca, T.W., Q. Chen, A.G. Frazier, J.P. Price, Y.-L. Chen, P.-S. Chu, J.K. Eischeid, and D.M. Delparte. 2013. Online rainfall atlas of Hawai‘i. Bulletin of the American Meteorological Society 94: 313–316.CrossRefGoogle Scholar
  21. Gonneea, M.E., P.J. Morris, H. Dulaiova, and M.A. Charette. 2008. New perspectives on radium behavior within a subterranean estuary. Marine Chemistry 109: 250–267.CrossRefGoogle Scholar
  22. Hench, J.L., J.J. Leichter, and S.G. Monismith. 2008. Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnology and Oceanography 53: 2681–2694.CrossRefGoogle Scholar
  23. Herdman, L.M., J.L. Hench, and S.G. Monismith. 2015. Heat balances and thermally-driven lagoon-ocean exchanges on a tropical coral reef system (Moorea, French Polynesia). Journal of Geophysical Research, Oceans 120: 1233–1252.CrossRefGoogle Scholar
  24. Hildenbrand, A., C. Marlin, A. Conroy, P.Y. Gillot, A. Filly, and M. Massault. 2005. Isotopic approach of rainfall and groundwater circulation in the volcanic structure of Tahiti-Nui (French Polynesia). Journal of Hydrology 302: 187–208.CrossRefGoogle Scholar
  25. Hwang, D.-W., Y.-W. Lee, and G. Kim. 2005. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnology and Oceanography 50: 1393–1403.CrossRefGoogle Scholar
  26. Institut Statistique de Polynésie Française (ISPF). 2015. Tableau II Population des communes et communes asociées de Polynésie française. Retrieved Sept. 4, 2015.Google Scholar
  27. Ji, T., J. Du, W.S. Moore, G. Zhang, N. Su, and J. Zhang. 2013. Nutrient inputs to a lagoon through submarine groundwater discharge: the case of Laoye Lagoon, Hainan, China. Journal of Marine Systems 111-112: 253–262.CrossRefGoogle Scholar
  28. Johnson, A. G. 2012. A water-budget model and estimates of groundwater recharge for Guam. U.S. Geological Survey Scientific Investigation Report 2012–5028, 53 p.Google Scholar
  29. Johnson, A.G., C.R. Glenn, W.C. Burnett, R.N. Peterson, and P.G. Lucey. 2008. Aerial infrared imaging reveals large nutrient-rich groundwater inputs to the ocean. Geophysical Research Letters 35: L15606.CrossRefGoogle Scholar
  30. Jokiel, P.L. 2004. Temperature stress and coral bleaching. In Coral health and disease, eds. E. Rosenberg, and Y. Loya, 401–425. New York: Springer.CrossRefGoogle Scholar
  31. Kelly, R.P., and S.B. Moran. 2002. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnology and Oceanography 47: 1796–1807.CrossRefGoogle Scholar
  32. Kim, G., and P.W. Swarzenski. 2010. Submarine groundwater discharge (SGD) and associated nutrient fluxes to the coastal ocean. In Carbon and nutrient fluxes in continental margins, eds. K.-K. Liu, and et al. Berlin Heidelberg: Springer-Verlag.Google Scholar
  33. Kim, G., K.–.K. Lee, K.–.S. Park, D.–.W. Hwang, and H.–.S. Yang. 2003. Large submarine groundwater discharge (SGD) from a volcanic island. Geophysical Research Letters 30: 2098.CrossRefGoogle Scholar
  34. Kim, G., J.–.S. Kim, and D.–.W. Hwang. 2011. Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: implications for global biological production and organic carbon fluxes. Limnology and Oceanography 56: 673–682.CrossRefGoogle Scholar
  35. Knee, K.L., B.A. Layton, J.H. Street, A.B. Boehm, and A. Paytan. 2008. Sources of nutrients and fecal indicator bacteria to nearshore waters on the north shore of Kaua’i (Hawai’i, USA). Estuaries and Coasts 31: 607–622.CrossRefGoogle Scholar
  36. Knee, K.L., J.H. Street, E.E. Grossman, A.B. Boehm, and A. Paytan. 2010. Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system: relation to land use (Kona coast, Hawai’i, USA). Limnology and Oceanography 55: 1105–1122.CrossRefGoogle Scholar
  37. Kroeger, K.D., P.W. Swarzenski, W.J. Greenwood, and C. Reich. 2007. Submarine groundwater discharge to Tampa Bay: nutrient fluxes and biogeochemistry of the coastal aquifer. Marine Chemistry 104: 85–97.CrossRefGoogle Scholar
  38. Kuan, W.K., G. Jin, P. Xin, C. Robinson, B. Gibbes, and L. Li. 2012. Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research 48: W02502.CrossRefGoogle Scholar
  39. Leichter, J.J., A.L. Alldredge, G. Bernardi, A.J. Brooks, C.A. Carlson, R.C. Carpenter, P.J. Edmunds, M.R. Fewings, K.M. Hanson, J.L. Hench, et al. 2013. Biological and physical interactions on a tropical island coral reef: transport and retention processes on Moorea, French Polynesia. Oceanography 26: 52–63. doi:10.5670/oceanog.2013.45.CrossRefGoogle Scholar
  40. Lin, I.-T., C.-H. Wang, S. Lin, and Y.-G. Chen. 2011. Groundwater-seawater interactions off the coast of southern Taiwan: evidence from environmental isotopes. Journal of Asian Earth Sciences 41: 250–262.Google Scholar
  41. Lowe, R.J., J.L. Falter, S.G. Monismith, and M.J. Atkinson. 2009. A numerical study of circulation in a coastal reef-lagoon system. Journal of Geophysical Research, Oceans 114: C06022.Google Scholar
  42. Macdonald, G.A., A.T. Abbott, and F.L. Peterson. 1983. Volcanoes in the sea: the geology of Hawaii. Honolulu: University of Hawaii Press.Google Scholar
  43. Matson, E.A. 1993. Nutrient flux through soils and aquifers to the coastal zone of Guam (Mariana Islands). Limnology and Oceanography 38: 361–371.CrossRefGoogle Scholar
  44. McCook, L.J., J. Jompa, and G. Diaz-Pulido. 2001. Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19: 400–417.CrossRefGoogle Scholar
  45. Michael, H.A., A.E. Mulligan, and C.F. Harvey. 2005. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436: 1145–1148.CrossRefGoogle Scholar
  46. Monismith, S.G., L.M.M. Herdman, S.H. Ahmerkamp, and J.L. Hench. 2013. Wave transformation and wave-driven flow across a steep coral reef. Journal of Physical Oceanography 43: 1356–1379.CrossRefGoogle Scholar
  47. Monsen, N.E., J.E. Cloern, L.V. Lucas, and S.G. Monismith. 2002. A comment on the use of flushing time, residence time, and age as transport time scales. Limnology and Oceanography 47: 1545–1553.CrossRefGoogle Scholar
  48. Montluçon, D., and S.A. Sañudo-Wilhelmy. 2001. Influence of net groundwater discharge on the chemical composition of a coastal environment: Flanders Bay, Long Island, New York. Environmental Science and Technology 35: 480–486.CrossRefGoogle Scholar
  49. Moore, W.S. 2000. Determining coastal mixing rates using radium isotopes. Continental Shelf Research 20: 1993–2007.CrossRefGoogle Scholar
  50. Moore, W.S., J.O. Blanton, and S.B. Joye. 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research: Oceans 111(C9). doi:10.1029/2005JC003041.
  51. Moorea Coral Reef LTER. 2014. Gump station meteorological data, ongoing since 2006. knb-lter-mcr.9.37 (http://metacat.lternet.edu/knb/metacat/knb-lter-mcr.9.37/lter).
  52. Neall, V.E., and S.A. Trewick. 2008. The age and origin of the Pacific islands: a geological overview. Philosophical Transactions of the Royal Society of London B 363(1508): 3298–3308.CrossRefGoogle Scholar
  53. Null, K.A., N.T. Dimova, K.L. Knee, B.K. Esser, P.W. Swarzenski, M.J. Singleton, M. Stacey, and A. Paytan. 2012. Submarine groundwater discharge-derived nutrient loads to San Francisco Bay: implications to future ecosystem changes. Estuaries and Coasts 35: 1299–1315.CrossRefGoogle Scholar
  54. Null, K.A., K.L. Knee, E.D. Crook, N.R. de Sieyes, M. Rebolledo-Vieyra, L. Hernández-Terrones, and A. Paytan. 2014. Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula. Continental Shelf Research 77: 38–50.CrossRefGoogle Scholar
  55. Oliveira, J., P. Costa, and E.S. Braga. 2006. Seasonal variations of 222Rn and SGD fluxes to Ubatuba embayments, São Paulo. Journal of Radioanalytical and Nuclear Chemistry 269: 689–695.CrossRefGoogle Scholar
  56. Pasturel, J. 1993. La climatologie des îles. Atlas de la Polynésie Française. O.R.S.T.O.M. éditions: planches 42–43.Google Scholar
  57. Paytan, A., G.G. Shellenbarger, J.H. Street, M.E. Gonneea, K. Davis, M.B. Young, and W.S. Moore. 2006. Submarine groundwater discharge: an important source of new inorganic nitrogen to coral reef ecosystems. Limnology and Oceanography 51: 343–348.CrossRefGoogle Scholar
  58. Peng, T.-R., C.-T.A. Chen, C.-H. Wang, J. Zhang, and Y.-J. Lin. 2008. Assessment of terrestrial factors controlling submarine groundwater discharge in water shortage and highly deformed island of Taiwan, Western Pacific Ocean. Journal of Oceanography 64: 323–337.Google Scholar
  59. Peterson, R.N., W.C. Burnett, M. Taniguchi, J. Chen, I.R. Santos, and T. Ishitobi. 2008. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China. Journal of Geophysical Research 113: C09021.CrossRefGoogle Scholar
  60. Peterson, R.N., W.C. Burnett, C.R. Glenn, and A.G. Johnson. 2009. Quantification of point-source groundwater discharges to the ocean from the shoreline of the Big Island, Hawaii. Limnology and Oceanography 54: 890–904.CrossRefGoogle Scholar
  61. Povinec, P.P., W.C. Burnett, A. Beck, H. Bokuniewicz, M. Charette, M.E. Gonneea, M. Groening, T. Ishitobi, Y. Kontar, L.L. Wee Kwong, D.E.P. Marie, W.S. Moore, J.A. Oberdorfer, R. Peterson, R. Ramessur, J. Rapaglia, T. Stieglitz, and Z. Top. 2012. Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island. Journal of Environmental Radioactivity 104: 24–45.CrossRefGoogle Scholar
  62. Resh, V.H., M. Moser, and M. Poole. 1999. Feeding habits of some freshwater fishes in streams of Moorea, French Polynesia. Annals of Limnology 35: 205–210.CrossRefGoogle Scholar
  63. Robinson, C., L. Li, and D.A. Barry. 2007. Effect of tidal forcing on a subterranean estuary. Advances in Water Resources 30: 851–865.CrossRefGoogle Scholar
  64. Rodellas, V., J. Garcia-Orellana, P. Masqué, and J.S. Font-Muñoz. 2015. The influence of sediment sources on radium-derived estimates of Submarine Groundwater Discharge. Marine Chemistry 171: 107–117.Google Scholar
  65. Sadat-Noori, M., I.R. Santos, C.J. Sanders, L.M. Sanders, and D.T. Maher. 2015. Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. Journal of Hydrology 528: 703–719.CrossRefGoogle Scholar
  66. Senal, M.I.S., G.S. Jacinto, M.L. San Diego-McGlone, F. Siringan, P. Zamora, L. Soria, M.B. Cardenas, C. Villanoy, and O. Cabrera. 2011. Nutrient inputs from submarine groundwater discharge on the Santiago reef flat, Boliano, Northwestern Philippines. Marine Pollution Bulletin 63: 195–200.CrossRefGoogle Scholar
  67. Serafini, J., J.P. Barriot, and L. Sichoix. 2014. The evolution of precipitable water and precipitation over the island of Tahiti from hourly to seasonal periods. International Journal of Remote Sensing 35(18): 6687–6707.CrossRefGoogle Scholar
  68. Shellenbarger, G.G., S.G. Monismith, A. Genin, and A. Paytan. 2006. The importance of submarine groundwater discharge to the nearshore nutrient supply in the Gulf of Aqaba (Israel). Limnology and Oceanography 51: 1876–1886.CrossRefGoogle Scholar
  69. Souza, T.A., J.M. Godoy, M.L.D.P. Godoy, I. Moreira, Z.L. Carvalho, M.S.M.B. Salomão, and C.E. Rezende. 2010. Use of multitracers for the study of water mixing in the Paraíba do Sul River estuary. Journal of Environmental Radioactivity 101: 564–570.CrossRefGoogle Scholar
  70. Spalding, M.D., C. Ravilious, and E.P. Green. 2001. World atlas of coral reefs. Prepared at the UNEP World Conservation Monitoring Centre. Berkeley and Los Angeles: University of California Press 424 pp.Google Scholar
  71. Street, J.H., K.L. Knee, E.E. Grossman, and A. Paytan. 2008. Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai’i. Marine Chemistry 109: 355–376.CrossRefGoogle Scholar
  72. Su, N., J. Du, W.S. Moore, S. Liu, and J. Zhang. 2011. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China, using 226Ra. Science of the Total Environment 409: 3909–3918.CrossRefGoogle Scholar
  73. Sutherland, K. Patterson, S. Shaban, J.L. Joiner, J.W. Porter, and E.K. Lipp. 2011. Human pathogen shown to cause disease in the threatened Elkhorn coral Acropora palmata. PloS One 6: e23468.CrossRefGoogle Scholar
  74. Taniguchi, M., W.C. Burnett, J.E. Cable, and J.V. Turner. 2002. Investigation of submarine groundwater discharge. Hydrological Processes 16: 2115–2129.CrossRefGoogle Scholar
  75. Taniguchi, M., T. Ishitobi, and K.-I. Saeki. 2005. Evaluation of space-time distributions of submarine groundwater discharge. Groundwater 43: 336–342.CrossRefGoogle Scholar
  76. Taniguchi, M., W.C. Burnett, H. Dulaiova, F. Siringan, J. Foronda, G. Wattayakorn, S. Rungsupa, E.A. Kontar, and T. Ishitobi. 2008. Groundwater discharge as an important land-sea pathway into Manila Bay, Philippines. Journal of Coastal Research 24: 15–24.CrossRefGoogle Scholar
  77. Taylor, J.R. 1997. An introduction to error analysis, 2nd edn, 160–168. Sausalito: University Science Books.Google Scholar
  78. Van Dam, J.W., A.P. Negri, S. Uthicke, and J.F. Mueller. 2011. Chemical pollution on coral reefs: exposure and ecological effects. In Ecological impacts of toxic chemicals, eds. Francisco Sanchez-Bayo et al., 187–211. Amsterdam: Bentham Books.Google Scholar
  79. Voss, J.D., and L.L. Richardson. 2006. Nutrient enrichment enhances black band disease progression in corals. Coral Reefs 25: 569–576.CrossRefGoogle Scholar
  80. Washburn, L. 2014. MCR LTER: Coral Reef: Ocean currents and biogeochemistry: salinity, temperature and current at CTD and ADCP mooring FOR01 from 2004 ongoing. knb-lter-mcr.30.26. http://metacat.lternet.edu/knb/metacat/knb-lter-mcr.30.26/lter.
  81. Williams, H. 1933. Geology of Tahiti, Moorea, and Maiao. Bernice P. Bishop Museum Bulletin 105. Honolulu, Hawaii, The Museum.Google Scholar
  82. Won, J.H., J.Y. Lee, J.W. Kim, and G.W. Koh. 2006. Groundwater occurrence on Jeju Island, Korea. Hydrogeology Journal 14(4): 532–547.CrossRefGoogle Scholar
  83. Zhang, Z., J. Falter, R. Lowe, and G. Ivey. 2012. The combined influence of hydrodynamic forcing and calcification on the spatial distribution of alkalinity in a coral reef system. Journal of Geophysical Research, Oceans 117: C04034.Google Scholar
  84. Zimmerman, J.T.F. 1988. Estuarine residence times. In Hydrodynamics of Estuaries. Vol. 1, ed. B. Kjerfve, 75–84. Boca Raton: CRC Press.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2016

Authors and Affiliations

  • Karen L. Knee
    • 1
    • 2
  • Elizabeth D. Crook
    • 2
    • 3
  • James L. Hench
    • 4
  • James J. Leichter
    • 5
  • Adina Paytan
    • 2
  1. 1.Department of Environmental ScienceAmerican UniversityWashingtonUSA
  2. 2.Institute of Marine SciencesUniversity of CaliforniaSanta CruzUSA
  3. 3.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA
  4. 4.Nicholas School of the EnvironmentDuke UniversityBeaufortUSA
  5. 5.Scripps Institution of OceanographyUniversity of CaliforniaLa JollaUSA

Personalised recommendations