Advertisement

Estuaries and Coasts

, Volume 39, Issue 5, pp 1478–1490 | Cite as

Structural and Functional Composition of Benthic Nematode Assemblages During a Natural Recovery Process of Zostera noltii Seagrass Beds

  • Patrick Materatski
  • Anna-Maria Vafeiadou
  • Tom Moens
  • Helena Adão
Article

Abstract

In 2008, the stable seagrass beds of the Mira estuary (SW Portugal) disappeared completely; however, during 2009, they have begun to present early symptoms of natural recovery, characterised by a strongly heterogeneous distribution. This study was designed to investigate the spatial and temporal variability patterns of species composition, densities and trophic composition of the benthic nematode assemblages in this early recovery process, at two sampling sites with three stations each and at five sampling occasions. Because of the erratic and highly patchy seagrass recovery and the high environmental similarity of the two sampling sites, we expected within-site variability in nematode assemblages to exceed between-site variability. However, contrary to that expectation, whilst nematode genus composition was broadly similar between sites, nematode densities differed significantly between sites, and this between-site variability exceeded within-site variability. This may be linked to differences in the Zostera recovery patterns between both sites. In addition, no clear temporal patterns of nematode density, trophic composition and diversity were evident. Nematode assemblages generally resembled those of other estuarine muddy intertidal areas, which have a high tolerance of stress conditions.

Keywords

Biodiversity Free-living nematodes Seagrass recovery Spatial and temporal distributions 

Notes

Acknowledgments

P. Materatski is grateful to the Portuguese Foundation for Science and Technology (FCT) for a doctoral grant (ref. SFRH/BD/65915/2009), funded by Programa Operacional Potencial Humano of QREN Portugal (2007–2013) and by the Portuguese budget through the Ministry of Education and Science. Anna-Maria Vafeiadou acknowledges a joint PhD grant from the research council of Ghent University (BOF). The present study was also carried out using funds provided by the research projects CoolNematode (FCT; EXPL/MAR-EST/0553/2013) and ProMira (PROMAR; 31-03-02-FEP-006).

Supplementary material

12237_2016_86_MOESM1_ESM.pdf (394 kb)
ESM 1 Mean density ± standard error (SE) of nematode genera (individuals 10 cm−2) on each sampling occasion (February 2010, June 2010, September 2010, December 2010 and February 2011), site (A and B) and station (1, 2, and 3). Trophic groups (TGs) of each genus. Only the most abundant genera are included in this table (PDF 394 kb)

References

  1. Adão, H. 2004. Dynamics of meiofauna communities in association with Zostera noltii seagrass beds in the Mira estuary (SW Portugal). University of Évora.Google Scholar
  2. Adão, H., A. Alves, J. Patricio, J. Neto, M. Costa, and J. Marques. 2009. Spatial distribution of subtidal Nematoda communities along the salinity gradient in southern European estuaries. Acta Oecologica-International Journal of Ecology 35: 287–300.CrossRefGoogle Scholar
  3. Alongi, D.M. 1987. Intertidal zonation and seasonality of meiobenthos in tropical mangrove estuaries. Marine Biology 95: 447–458.CrossRefGoogle Scholar
  4. Alves, A.S., H. Adao, T.J. Ferrero, J.C. Marques, M.J. Costa, and J. Patricio. 2013. Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: the use of nematodes in ecological quality assessment. Ecological Indicators 24: 462–475.CrossRefGoogle Scholar
  5. Anderson, M.J., R.N. Gorley, and K.R. Clarke. 2008. PERMANOVA A+ for PRIMER: guide to software and statistical methods. Plymouth: PRIMER-E.Google Scholar
  6. Ansari, Z.A., and A.H. Parulekar. 1993. Distribution, abundance and ecology of the meiofauna in a tropical estuary along the west coast of India. Hydrobiologia 262: 115–126.CrossRefGoogle Scholar
  7. Armenteros, M., A. Ruiz-Abierno, R. Fernandez-Garces, J.A. Perez-Garcia, L. Diaz-Asencio, M. Vincx, and W. Decraemer. 2009. Biodiversity patterns of free-living marine nematodes in a tropical bay: Cienfuegos, Caribbean Sea. Estuarine, Coastal and Shelf Science 85: 179–189.CrossRefGoogle Scholar
  8. Aryuthaka, C., and T. Kikuchi. 1996. Sediment meiobenthos community in the seagrass (Zostera marina L.) bed and its vicinity in Amakusa, south Japan. I. Spatial and seasonal variation of nematoda communities. Amakusa Marine Biological Laboratory 12: 79–107.Google Scholar
  9. Austen, M.C., and S. Widdicombe. 2006. Comparison of the response of meio- and macrobenthos to disturbance and organic enrichment. Journal of Experimental Marine Biology and Ecology 330: 96–104.CrossRefGoogle Scholar
  10. Bell, S.S., R.A. Brooks, B.D. Robbins, M.S. Fonseca, and M.O. Hall. 2001. Faunal response to fragmentation in seagrass habitats: implications for seagrass conservation. Biological Conservation 100: 115–123.CrossRefGoogle Scholar
  11. Bianchelli, S., C. Gambi, M. Mea, A. Pusceddu, and R. Danovaro. 2013. Nematode diversity patterns at different spatial scales in bathyal sediments of the Mediterranean Sea. Biogeosciences 10: 5465–5479.CrossRefGoogle Scholar
  12. Bongers, T. 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83: 14–19.CrossRefGoogle Scholar
  13. Bongers, T., R. Alkemade, and G.W. Yeates. 1991. Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the maturity index. Marine Ecology Progress Series 76: 135–142.CrossRefGoogle Scholar
  14. Bongers, T., and M. Bongers. 1998. Functional diversity of nematodes. Applied Soil Ecology 10: 239–251.CrossRefGoogle Scholar
  15. Borja, A., D.M. Dauer, M. Elliott, and C.A. Simenstad. 2010. Medium- and long-term recovery of estuarine and coastal ecosystems: patterns, rates and restoration effectiveness. Estuaries and Coasts 33: 1249–1260.CrossRefGoogle Scholar
  16. Boström, C., and E. Bonsdorff. 1997. Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. Journal of Sea Research 37: 153–166.CrossRefGoogle Scholar
  17. Boström, C., E.L. Jackson, and C.A. Simenstad. 2006. Seagrass landscapes and their effects on associated fauna: a review. Estuarine, Coastal and Shelf Science 68: 383–403.CrossRefGoogle Scholar
  18. Bouvy, M., and J. Soyer. 1989. Benthic seasonality in an intertidal mud flat at Kerguelen Islands (Austral Ocean). The relationships between meiofaunal abundance and their potential microbial food. Polar Biology 10: 19–27.CrossRefGoogle Scholar
  19. Bouwman, L.A., K. Romeyn, D.R. Kremer, and F.B. Vanes. 1984. Occurrence and feeding biology of some nematode species in estuarine Aufwuchs communities.1. Cahiers de Biologie Marine 25: 287–303.Google Scholar
  20. Brown, A.C., and A. McLachlan. 1990. Ecology of sandy shores. Amsterdam: Elsevier.Google Scholar
  21. Cabaço, S., R. Machas, V. Vieira, and R. Santos. 2008. Impacts of urban wastewater discharge on seagrass meadows (Zostera noltii). Estuarine, Coastal and Shelf Science 78: 1–13.CrossRefGoogle Scholar
  22. Castel, J., L. Pj, V. Escaravage, I. Auby, and M.E. Garcia. 1989. Influence of seagrass beds and oyster parks on the abundance and biomass patterns of meiobenthos and macrobenthos in tidal flats. Estuarine, Coastal and Shelf Science 28: 71–85.CrossRefGoogle Scholar
  23. Clarke, K., and M. Ainsworth. 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92: 205–219.CrossRefGoogle Scholar
  24. Clarke, K.R., and R.H. Green. 1988. Statistical design and analysis for a biological effects study. Marine Ecology Progress Series 46: 213–226.CrossRefGoogle Scholar
  25. Clarke, K.R., and R.M. Warwick. 2001. Changes in marine communities: an approach to statistical analysis and interpretation.Google Scholar
  26. Connolly, R.M. 1997. Differences in composition of small, motile invertebrate assemblages from seagrass and unvegetated habitats in a southern Australian estuary. Hydrobiologia 346: 137–148.CrossRefGoogle Scholar
  27. Costa, M.J., F. Catarino, and A. Bettencourt. 2001. The role of salt marshes in the Mira estuary (Portugal). Wetlands Ecology and Management 9: 121–134.CrossRefGoogle Scholar
  28. Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. O’Neill, J. Paruelo, R. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.CrossRefGoogle Scholar
  29. Coull, B.C. 1988. The ecology of marine meiofauna. In Introduction to the study of meiofauna, ed. R.P. Higgins and H. Thiel. Washington: Smithsonian Institute Press.Google Scholar
  30. Cunha, A.H., J. Assis, and E. Serrão. 2013. Seagrass in Portugal: a most endangered marine habitat. Aquatic Botany 104: 193–203.CrossRefGoogle Scholar
  31. Danovaro, R. 1996. Detritus–bacteria–meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Marine Biology 127: 1–13.CrossRefGoogle Scholar
  32. Danovaro, R., and C. Gambi. 2002. Biodiversity and trophic structure of nematode assemblages in seagrass systems: evidence for a coupling with changes in food availability. Marine Biology 141: 667–677.CrossRefGoogle Scholar
  33. Danovaro, R., C. Gambi, A. Dell’Anno, C. Corinaidesi, S. Fraschetti, A. Vanreusel, M. Vincx, and A.J. Gooday. 2008. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Current Biology 18: 1–8.CrossRefGoogle Scholar
  34. Danovaro, R., C. Gambi, and N. Della Croce. 2002. Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep-Sea Research Part I-Oceanographic Research Papers 49: 843–857.CrossRefGoogle Scholar
  35. De Troch, M., F. Fiers, and M. Vincx. 2000. Range extension and microhabitat of Lightiella incisa (Cephalocarida). Journal of Zoology 251: 199–204.CrossRefGoogle Scholar
  36. Edgar, G.J., C. Shaw, W. Gf, and L.S. Hammond. 1994. Comparisons of species richness, size structure and productions of benthos in vegetated and unvegetated habitats in Western Port, Victoria. Journal of Experimental Marine Biology and Ecology 176: 201–226.CrossRefGoogle Scholar
  37. Escaravage, V., M.E. Garcia, and J. Castel. 1989. The distribution of meiofauna and its contribution to detritic pathways in tidal flats (Arcachon Bay, France). Scientia Marina 53: 551-559.Google Scholar
  38. Eskin, R., and B. Coull. 1987. Seasonal and three-year variability, of meiobenthic nematode populations at two estuarine sites. Marine Ecology Progress Series 41: 295–303.CrossRefGoogle Scholar
  39. Ferrero, T., N. Debenham, and P. Lambshead. 2008. The nematodes of the Thames estuary: assemblage structure and biodiversity, with a test of Attrill’s linear model. Estuarine, Coastal and Shelf Science 79: 409–418.CrossRefGoogle Scholar
  40. Fisher, R., and M.J. Sheaves. 2003. Community structure and spatial variability of marine nematodes in tropical Australian pioneer seagrass meadows. Hydrobiologia 495: 143–158.CrossRefGoogle Scholar
  41. Fonseca, G., P. Hutchings, and F. Gallucci. 2011. Meiobenthic communities of seagrass beds (Zostera capricorni) and unvegetated sediments along the coast of New South Wales, Australia. Estuarine, Coastal and Shelf Science 91: 69–77.CrossRefGoogle Scholar
  42. Fourqurean, J.W., and L.M. Rutten. 2004. The impact of Hurricane Georges on soft-bottom, backreef communities: site- and species-specific effects in south Florida seagrass beds. Bulletin of Marine Science 75: 239–257.Google Scholar
  43. Gambi, C.S., S. Bianchelli, M. Pérez, O. Invers, J.M. Ruiz, and R. Danovaro. 2009. Biodiversity response to experimental induced hypoxic–anoxic conditions in seagrass sediments. Biodiversity and Conservation 18: 33–54.CrossRefGoogle Scholar
  44. Gyedu-Ababio, T., and D. Baird. 2006. Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicology and Environmental Safety 63: 443–450.CrossRefGoogle Scholar
  45. Heck, K.L., K.W. Abele, C.T. Roman, and M.P. Fahay. 1995. Composition, abundance, biomass and production of macrofauna in a New England estuary: comparisons among eelgrass meadows and other nursery habitats. Estuaries 18: 379–389.CrossRefGoogle Scholar
  46. Heip, C., M. Vincx, and G. Vranken. 1985. The ecology of free-living nematodes. Oceanographic Marine Biology Annual Review 23: 399–489.Google Scholar
  47. Hemminga, M.A., and C.M. Duarte. 2000. Seagrass ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  48. Hirst, J.A., and M.J. Attrill. 2008. Small is beautiful: an inverted view of habitat fragmentation in seagrass beds. Estuarine, Coastal and Shelf Science 78: 811–818.CrossRefGoogle Scholar
  49. Hughes, A.R., S.L. Williams, C.M. Duarte, K.L. Heck, and M. Waycott. 2009. Associations of concern: declining seagrasses and threatened dependent species. Frontiers in Ecology and the Environment 7: 242–246.CrossRefGoogle Scholar
  50. Jensen, P. 1984. Ecology of benthic and epiphytic nematodes in brackish waters. Hydrobiologia 108: 201–217.CrossRefGoogle Scholar
  51. Li, J., M. Vincx, P.M.J. Herman, and C.H. Heip. 1997. Monitoring meiobenthos using cm-, m- and km-scales in the Southern Bight of the North Sea. Marine Environmental Research 34: 265–278.CrossRefGoogle Scholar
  52. Losi, V., M. Moreno, L. Gaozza, L. Vezzulli, M. Fabiano, and G. Albertelli. 2013. Nematode biomass and allometric attributes as indicators of environmental quality in a Mediterranean harbour (Ligurian Sea, Italy). Ecological Indicators 30: 80–89.CrossRefGoogle Scholar
  53. Marbà, N., R. Santiago, E. Díaz-Almela, E. Álvarez, and C.M. Duarte. 2006. Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress. Estuarine, Coastal and Shelf Science 67: 475–483.CrossRefGoogle Scholar
  54. Materatski, P., A. Vafeiadou, R. Ribeiro, T. Moens, and H. Adão. 2015. A comparative analysis of benthic nematode assemblages from Zostera noltii beds before and after a major vegetation collapse. Estuarine, Coastal and Shelf Science 167: 256–268.CrossRefGoogle Scholar
  55. Moens, T., S. Bouillon, and F. Gallucci. 2005. Dual stable isotope abundances unravel trophic position of estuarine nematodes. Journal of the Marine Biological Association of the UK 85: 1401–1407.CrossRefGoogle Scholar
  56. Moens, T., D. Van Gansbeke, and M. Vincx. 1999. Linking estuarine nematodes to their suspected food. A case study from the Westerschelde estuary (south-west Netherlands). Journal of the Marine Biological Association of the UK 79: 1017–1027.CrossRefGoogle Scholar
  57. Moens, T., A.M. Vafeiadou, E. De Geyter, P. Vanormelingen, K. Sabbe, and M. De Troch. 2014. Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size. Journal of Sea Research 92: 125–133.CrossRefGoogle Scholar
  58. Moens, T., U. Braeckman, S. Derycke, G. Fonseca, F. Gallucci, R. Gingold, K. Guilini, J. Ingels, D. Leduc, J. Vanaverbeke, C. Van Colen, A. Vanreusel, and M. Vincx. 2013. Ecology of free-living marine nematodes. In: Schmidt-Rhaesa, A. (ed.), Handbook of Zoology. Gastrotricha, Cycloneuralia and Gnathifera. Vol. 2. Nematoda. De Gruyter, Berlin: 109-152.Google Scholar
  59. Moens, T., and M. Vincx. 1997. Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the UK 77: 211–227.CrossRefGoogle Scholar
  60. Moreno, M., T.J. Ferrero, I. Gallizia, L. Vezzulli, G. Albertelli, and M. Fabiano. 2008. An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuarine, Coastal and Shelf Science 77: 565–576.CrossRefGoogle Scholar
  61. Moreno, M., F. Semprucci, L. Vezzulli, M. Balsamo, M. Fabiano, and G. Albertelli. 2011. The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators 11: 328–336.CrossRefGoogle Scholar
  62. Norling, K., R. Rosenberg, S. Hulth, A. Grémare, and E. Bonsdorff. 2007. Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Marine Ecology Progress Series 332: 11–23.CrossRefGoogle Scholar
  63. Ólafsson, E., S. Carlstrom, and S. Ndaro. 2000. Meiobenthos of hypersaline tropical mangrove sediment in relation to spring tide inundation. Hydrobiologia 426: 57–64.CrossRefGoogle Scholar
  64. Ólafsson, E., and R. Elmgren. 1997. Seasonal dynamics of subtittoral meiobenthos in relation to phytoplankton sedimentation in the Baltic Sea. Estuarine, Coastal and Shelf Science 45: 149–164.CrossRefGoogle Scholar
  65. Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. Bioscience 56: 987–996.CrossRefGoogle Scholar
  66. Patrício, J., H. Adão, J. Neto, A. Alves, W. Traunspurger, and J. Marques. 2012. Do nematode and macrofauna assemblages provide similar ecological assessment information? Ecological Indicators 14: 124–137.CrossRefGoogle Scholar
  67. Paula, J., I.C. Silva, S.M. Francisco, and A.A.V. Flores. 2006. The use of artificial benthic collectors for assessment of spatial patterns of settlement of megalopae of Carcinus maenas (L.) (Brachyura: Portunidae) in the lower Mira Estuary, Portugal. Hydrobiologia 557: 69–77.CrossRefGoogle Scholar
  68. Platt, H.M., and R.M. Warwick. 1988. Free living marine nematodes. Part II: British chromadorids. Pictorial key to world genera and notes for the identification of British species. Leiden.Google Scholar
  69. Rzeznik-Orignac, J., D. Fichet, and G. Boucher. 2003. Spatio-temporal structure of the nematode assemblages of the Brouage mudflat (Marennes Oléron, France). Estuarine, Coastal and Shelf Science 58: 77–88.CrossRefGoogle Scholar
  70. Schizas, N.V., and T.C. Shirley. 1996. Seasonal changes in structure of Alaskan intertidal meiofaunal assemblage. Marine Ecology Progress Series 133: 115–124.CrossRefGoogle Scholar
  71. Schratzberger, M., J.M. Gee, H.L. Rees, and S.E. Boyd. 2000. The structure and taxonomic composition of sublittoral meiofauna assemblages as an indicator of the status of marine environments. Journal of the Marine Biological Association of the UK 80: 969–980.CrossRefGoogle Scholar
  72. Schratzberger, M., T.A.D. Maxwell, K. Warr, J.R. Ellis, and S.I. Rogers. 2008. Spatial variability of infaunal nematode and polychaete assemblages in two muddy subtidal habitats. Marine Biology 153: 621–642.CrossRefGoogle Scholar
  73. Shannon, C.E., and W. Weaver. 1963. The mathematical theory of communication. Illinois: The University of Illinois Press.Google Scholar
  74. Smol, N., K.A. Willems, G. Jcr, and A.J.J. Sandee. 1994. Composition, distribution, biomass of meiobenthos in the Oosterschelde estuary (SW Netherlands). Hydrobiologia 282: 197–217.CrossRefGoogle Scholar
  75. Soetaert, K., M. Vincx, J. Wittoeck, and M. Tulkens. 1995. Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311: 185–206.CrossRefGoogle Scholar
  76. Somerfield, P., J. Gee, and R. Warwick. 1994. Soft sediment meiofaunal community structure in relation to a long-term heavy metal gradient in the Fal estuary system. Marine Ecology Progress Series 105: 79–88.CrossRefGoogle Scholar
  77. Steyaert, M., L. Moodley, T. Nadong, T. Moens, K. Soetaert, and M. Vincx. 2007. Responses of intertidal nematodes to short-term anoxic events. Journal of Experimental Marine Biology and Ecology 345: 175–184.CrossRefGoogle Scholar
  78. Steyaert, M., J. Vanaverbeke, A. Vanreusel, C. Barranguet, C. Lucas, and M. Vincx. 2003. The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuarine, Coastal and Shelf Science 58: 353–366.CrossRefGoogle Scholar
  79. Vafeiadou, A.M., P. Materatski, H. Adão, M. De Troch, and T. Moens. 2014. Resource utilization and trophic position of nematodes harpacticoid copepods in and adjacent to Zostera noltii beds. Biogeosciences 11: 4001-4014.CrossRefGoogle Scholar
  80. Valle, M., G. Chust, A. del Campo, M. Wisz, S. Olsen, J. Garmendia, and A. Borja. 2014. Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise. Biological Conservation 170: 74–85.CrossRefGoogle Scholar
  81. Vanaverbeke, J., T.N. Bezerra, U. Braeckman, A. De Groote, N. De Meester, T. Deprez, S. Derycke, K. Guilini, F. Hauquier, L. Lins, T. Maria, T. Moens, E. Pape, N. Smol, M. Taheri, J. Van Campenhout, A. Vanreusel, X. Wu, and M. Vincx. 2014. NeMys: world database of free-living marine nematodes. Accessed at http://nemys.ugent.be
  82. Verdonschot, P.F.M., B.M. Spears, C.K. Feld, S. Brucet, H. Keizer-Vlek, A. Borja, M. Elliott, M. Kernan, and R.K. Johnson. 2012. A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia 704: 453–474.CrossRefGoogle Scholar
  83. Vincx, M. 1996. Meiofauna in marine and freshwater sediments. In Methods for the examination of organismal diversity in soils and sediments, ed. G.S. Hall, 187–195. Wallingford: Cabi Publishing.Google Scholar
  84. Warwick, R.M. 1971. Nematode associations in the Exe estuary. Journal of the Marine Biological Association of the United Kingdom 51: 439–454.CrossRefGoogle Scholar
  85. Warwick, R.M., H.M. Platt, and P.J. Somerfield. 1998. Free-living nematodes (Part III) Monhysterids. In Synopsis of British Fauna, ed. B.a. Crothers.Google Scholar
  86. Webster, P.J., A.A. Rowden, and M.J. Attrill. 1998. Effect of shoot density on the infaunal macroinvertebrate community within a Zostera marina seagrass bed. Estuarine, Coastal and Shelf Science 47: 351–357.CrossRefGoogle Scholar
  87. Wieser, W. 1953. Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marine Nematoden. Arkiv für Zoologie 2: 439–484.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2016

Authors and Affiliations

  • Patrick Materatski
    • 1
  • Anna-Maria Vafeiadou
    • 2
  • Tom Moens
    • 2
  • Helena Adão
    • 1
  1. 1.MARE-Marine and Environmental Sciences Centre, School of Sciences and TechnologyUniversity of ÉvoraÉvoraPortugal
  2. 2.Marine Biology Lab, Department of BiologyGhent UniversityGhentBelgium

Personalised recommendations