Estuaries and Coasts

, Volume 39, Issue 5, pp 1422–1434 | Cite as

Fertilization Changes Seagrass Community Structure but not Blue Carbon Storage: Results from a 30-Year Field Experiment

  • Jason L. HowardEmail author
  • Alex Perez
  • Christian C. Lopes
  • James W. Fourqurean


Seagrass ecosystems are attracting attention as potentially important tools for carbon (C) sequestration, comparable to those terrestrial and aquatic ecosystems already incorporated into climate change mitigation frameworks. Despite the relatively low C stocks in living biomass, the soil organic carbon pools beneath seagrass meadows can be substantial. We tested the relationship between soil C storage and seagrass community biomass, productivity, and species composition by revisiting meadows experimentally altered by 30 years of consistent nutrient fertilization provided by roosting birds. While the benthos beneath experimental perches has maintained dense, Halodule wrightii-dominated communities compared to the sparse Thalassia testudinum-dominated communities at control sites, there were no significant differences in soil organic carbon stocks in the top 15 cm. Although there were differences in δ13C of the dominant seagrass species at control and treatment sites, there was no difference in soil δ13C between treatments. Averages for soil organic carbon content (2.57 ± 0.08 %) and δ13C (−12.0 ± 0.3 ‰) were comparable to global averages for seagrass ecosystems; however, our findings question the relevance of local-scale seagrass species composition or density to soil organic carbon pools in some environmental contexts.


Seagrass Organic matter Sediment Blue carbon 



This research was funded by the US Environmental Protection Agency as part of the Florida Keys National Marine Sanctuary Water Quality Protection Program (Contract No. X7 95469210) and by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Grant No. DEB-1237517. Philip Matich provided invaluable lab assistance. Along with Philip, this project was enriched by Jean Alcazar and three anonymous reviewers who offered support and valuable comments. This is contribution number 759 of the Southeast Environmental Research Center at FIU.

Supplementary material

12237_2016_85_MOESM1_ESM.pdf (493 kb)
Online Resource 1 (PDF 492 kb)


  1. Armitage, A.R., and J.W. Fourqurean. 2016. Carbon storage in seagrass soils: Long-term nutrient history exceeds the effects of near-term nutrient enrichment. Biogeosciences 13: 313–321.CrossRefGoogle Scholar
  2. Arndt, S., B.B. Jørgensen, D.E. LaRowe, J.J. Middelburg, R. Pancost, and P. Regnier. 2013. Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Science Reviews 103: 53–86. doi: 10.1016/j.earscirev.2013.02.008.
  3. Boer, W.F. 2007. Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: A review. Hydrobiologia 591: 5–24.CrossRefGoogle Scholar
  4. Borum, J., O. Pedersen, T.M. Greve, T.A. Frankovich, J.C. Zieman, J.W. Fourqurean, and C.J. Madden. 2005. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology 93: 148–158.CrossRefGoogle Scholar
  5. Bosence, D. 1989. Surface sublittoral sediments of Florida Bay. Bulletin of Marine Science 44: 434–453.Google Scholar
  6. Burdige, D.J., and R.C. Zimmerman. 2002. Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnology and Oceanography 47: 1751–1763.CrossRefGoogle Scholar
  7. Campbell, J. E., and J. W. Fourqurean. 2009. Interspecific variation in the elemental and stable isotope content of seagrasses in South Florida. Marine Ecology Progress Series 387:109–123. Google Scholar
  8. Campbell, J.E., E.A. Lacey, R.A. Decker, S. Crooks, and J.W. Fourqurean. 2014. Carbon storage in seagrass beds of Abu Dhabi, United Arab Emirates. Estuaries and Coasts 38: 242–251.CrossRefGoogle Scholar
  9. Costanza, R., R. de Groot, P. Sutton, S. van der Ploeg, S.J. Anderson, I. Kubiszewski, S. Farber, and R.K. Turner. 2014. Changes in the global value of ecosystem services. Global Environmental Change 26: 152–158. doi: 10.1016/j.gloenvcha.2014.04.002.CrossRefGoogle Scholar
  10. Duarte, C.M., and J. Cebrian. 1996. The fate of marine autotrophic production. Limnology and Oceanography 41: 1758–1766.CrossRefGoogle Scholar
  11. Duarte, C.M., M. Merino, N.S.R. Agawin, J. Uri, M.D. Fortes, M.E. Gallegos, N. Marba, and M.A. Hemminga. 1998. Root production and belowground seagrass biomass. Marine Ecology Progress Series 171: 97–108.CrossRefGoogle Scholar
  12. Duarte, C.M., J.J. Middelburg, and N. Caraco. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2: 1–8.Google Scholar
  13. Duarte, C.M., N. Marbà, E. Gacia, J.W. Fourqurean, J. Beggins, C. Barrón, and E.T. Apostolaki. 2010. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles 24: GB4032. doi: 10.1029/2010GB003793.
  14. Duarte, C.M., H. Kennedy, N. Marbà, and I. Hendriks. 2011. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean and Coastal Management 83: 32–38. doi: 10.1016/j.ocecoaman.2011.09.001.
  15. Duarte, C.M., T. Sintes, and N. Marbà. 2013. Assessing the CO2 capture potential of seagrass restoration projects. Journal of Applied Ecology 50: 1341–1349Google Scholar
  16. Enriquez, S., C.M. Duarte, and K.A.J. Sand-Jensen. 1993. Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C: N: P content. Oecologia 94: 457–471.CrossRefGoogle Scholar
  17. Ferguson, C.A. 2008. Nutrient pollution and the molluscan death record: Use of mollusc shells to diagnose environmental change. Journal of Coastal Research 1: 250–259. doi: 10.2112/06-0650.1.CrossRefGoogle Scholar
  18. Folmer, E.O., M. van der Geest, E. Jansen, H. Olff, T.M. Anderson, T. Piersma, and J.A. van Gils. 2012. Seagrass–sediment feedback: An exploration using a non-recursive structural equation model. Ecosystems 15: 1380–1393. doi: 10.1007/s10021-012-9591-6.CrossRefGoogle Scholar
  19. Fonseca, M.S., and J.S. Fisher. 1986. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Marine Ecology Progress Series 29: 15–22.CrossRefGoogle Scholar
  20. Fourqurean, J.W., and J.C. Zieman. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from C: N: P ratios of the dominant seagrass Thalassia testudinum. Limnology and Oceanography 37: 162–171.Google Scholar
  21. Fourqurean, J.W., G.V.N. Powell, W.J. Kenworthy, and J.C. Zieman. 1995. The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72: 349–358.Google Scholar
  22. Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M.A. Mateo, E.T. Apostolaki, et al. 2012a. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505–509. doi: 10.1038/ngeo1477.CrossRefGoogle Scholar
  23. Fourqurean, J.W., G.A. Kendrick, L.S. Collins, R.M. Chambers, and M.A. Vanderklift. 2012b. Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: Examples from Florida Bay and Shark Bay. Marine and Freshwater Research 63: 967. doi: 10.1071/MF12101.CrossRefGoogle Scholar
  24. Gacia, E., C.M. Duarte, and J.J. Middelburg. 2002. Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnology and Oceanography 47: 23–32.Google Scholar
  25. Gleeson, S.K. 1993. Optimization of tissue nitrogen and root-shoot allocation. Annals of Botany 71: 23–31.CrossRefGoogle Scholar
  26. Greiner, Jill T, Karen J McGlathery, John Gunnell, and Brent A McKee. 2013. Seagrass restoration enhances “blue carbon” sequestration in coastal waters. PLoS ONE 8: e72469.Google Scholar
  27. Hansen, J.C.R., and M.A. Reidenbach. 2012. Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Marine Ecology Progress Series 448: 271–287. doi: 10.3354/meps09225.CrossRefGoogle Scholar
  28. Hansen, J.C.R., and M.A. Reidenbach. 2013. Seasonal growth and senescence of a Zostera marina seagrass meadow alters wave-dominated flow and sediment suspension within a coastal bay. Estuaries and Coasts 36: 1099–1114. doi: 10.1007/s12237-013-9620-5.
  29. Harrison, P.G. 1989. Detrital processing in seagrass systems: A review of factors affecting decay rates, remineralization and detritivory. Aquatic Botany 35: 263–288.CrossRefGoogle Scholar
  30. Heck Jr., K.L., and J.F. Valentine. 2006. Plant–herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology 330: 420–436. doi: 10.1016/j.jembe.2005.12.044.CrossRefGoogle Scholar
  31. Hejnowicz, A.P., and H. Kennedy. 2015. Harnessing the climate mitigation, conservation and poverty alleviation potential of seagrasses: Prospects for developing blue carbon initiatives and payment for. Frontiers in Marine Sciences 2: 32. doi: 10.3389/fmars.2015.00032.Google Scholar
  32. Hendriks, I.E., T. Sintes, T.J. Bouma, and C.M. Duarte. 2008. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Marine Ecology Progress Series 356: 163–173. doi: 10.3354/meps07316.
  33. Herbert, D.A., and J.W. Fourqurean. 2008. Ecosystem structure and function still altered two decades after short-term fertilization of a seagrass meadow. Ecosystems 11: 688–700. doi: 10.1007/s10021-008-9151-2.CrossRefGoogle Scholar
  34. Holmer, M., and G.M.E. Perillo. 2009. Productivity and biogeochemical cycling in seagrass ecosystems. In Coastal Wetlands: An Integrated Ecosystem Approach, ed. Perillo G.M.E., Wolanski E., Cahoon D.R., 377–402. Amsterdam: Elsevier Science.Google Scholar
  35. Kennedy, H., J. Beggins, C.M. Duarte, J.W. Fourqurean, M. Holmer, N. Marbà, and J.J. Middelburg. 2010. Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles 24: GB4026. doi: 10.1029/2010GB003848.
  36. Lavery, P. S., M. A. Mateo, O. Serrano, and M. Rozaimi. 2013. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE 8:e73748.Google Scholar
  37. Lee, K.S., and K.H. Dunton. 2000. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Marine Ecology Progress Series 196: 39–48. doi: 10.3354/meps196039.
  38. Lopez, N., C. Duarte, F. Vallespinos, J. Romero, and T. Alcoverro. 1995. Bacterial activity in NW Mediterranean seagrass (Posidonia oceanica) sediments. Journal of Experimental Marine Biology and Ecology 187:39–49.Google Scholar
  39. Lopez, N., C. M. Duarte, F. Vallespinos, J. Romero, and T. Alcoverro. 1998. The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. Journal of Experimental Marine Biology and Ecology 224:155–166.Google Scholar
  40. López-Sáez, J.A., L. López-Merino, M.Á. Mateo, O. Serrano, S. Pérez-Díaz, and L. Serrano. 2009. Palaeoecological potential of the marine organic deposits of Posidonia oceanica: A case study in the NE Iberian Peninsula. Palaeogeography Palaeoclimatology Palaeoecology 271: 215–224. doi: 10.1016/j.palaeo.2008.10.020.
  41. Macreadie, P.I., M.E. Baird, S.M. Trevathan-Tackett, A.W.D. Larkum, and P.J. Ralph. 2014. Quantifying and modelling the carbon sequestration capacity of seagrass meadows—A critical assessment. Marine Pollution Bulletin 83: 430–439. doi: 10.1016/j.marpolbul.2013.07.038.CrossRefGoogle Scholar
  42. Marbà, N., A. Arias-Ortiz, P. Masqué, G.A. Kendrick, I. Mazarrasa, G.R. Bastyan, J. Garcia-Orellana, and C.M. Duarte. 2015. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. Journal of Ecology 103: 296–302. doi: 10.1111/1365-2745.12370.
  43. Mateo, M.A., and J. Romero. 1997. Detritus dynamics in the seagrass Posidonia oceanica: Elements for an ecosystem carbon and nutrient budget. Marine Ecology Progress Series 151: 43–53.Google Scholar
  44. Mateo, M.A., J. Cebrian, K. Dunton, and T. Mutchler. 2006. Carbon flux in seagrass ecosystems. In Seagrasses: biology, ecology and conservation, ed. Larkum A.W.D., Orth R.J., Duarte C., 159–192. Dordrecht: Springer.Google Scholar
  45. Mcleod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Björk, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger, and B.R. Silliman. 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560. doi: 10.1890/110004.CrossRefGoogle Scholar
  46. Mellors, J., H. Marsh, T.J.B. Carruthers, and M. Waycott. 2002. Testing the sediment-trapping paradigm of seagrass: Do seagrasses influence nutrient status and sediment structure in tropical intertidal environments? Bulletin of Marine Science 71: 1215–1226.Google Scholar
  47. Pedersen, M.F., C.M. Duarte, and J. Cebrian. 1997. Rates of changes in organic matter and nutrient stocks during seagrass Cymodocea nodosa colonization and stand development. Marine Ecology Progress Series 159: 29–36. doi: 10.1111/1462-2920.12274.
  48. Pendleton, L., D.C. Donato, B.C. Murray, S. Crooks, W.A. Jenkins, S. Sifleet, C. Craft, et al. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7: e43542. doi: 10.1371/journal.pone.0043542.t001.
  49. Peterson, B. J., and J. W. Fourqurean. 2001. Large-scale patterns in seagrass (Thalassia testudinum) demographics in south Florida. Limnology and Oceanography 46:1077–1090.Google Scholar
  50. Powell, G.V.N., S.M. Sogard, and J.G. Holmquist. 1985. Ecology of shallow-water habitats in Florida Bay. Final Report, NPS contract CX5280-3-2339, South Florida Research Center, Homestead, Florida. 68: 405.Google Scholar
  51. Powell, G.V.N., J.W. Kenworthy, and J.W. Fourqurean. 1989. Experimental evidence for nutrient limitation of seagrass growth in a tropical estuary with restricted circulation. Bulletin of Marine Science 44: 324–340.Google Scholar
  52. Powell, G.V.N., J.W. Fourqurean, W.J. Kenworthy, and J.C. Zieman. 1991. Bird colonies cause seagrass enrichment in a subtropical estuary: Observational and experimental evidence. Estuarine, Coastal and Shelf Science 32: 567–579.CrossRefGoogle Scholar
  53. Ricart, A. M., P. H. York, M. A. Rasheed, M. Pérez, J. Romero, C. V. Bryant, and P. I. Macreadie. 2015. Variability of sedimentary organic carbon in patchy seagrass landscapes. Marine Pollution Bulletin 100:476–482. doi: 10.1016/j.marpolbul.2015.09.032.
  54. Serrano, O., P. S. Lavery, and M. Rozaimi. 2014. Influence of water depth on the carbon sequestration capacity of seagrasses. Global Biogeochemical Cycles 28:950–961. doi: 10.1002/(ISSN)1944-9224.
  55. Smith, S.V. 1981. Marine macrophytes as a global carbon sink. Science 211: 838–840. doi: 10.1126/science.211.4484.838.CrossRefGoogle Scholar
  56. Ward, L.G., W. Michael Kemp, and W.R. Boynton. 1984. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Marine Geology 59: 85–103.CrossRefGoogle Scholar
  57. Westlake, D F. 1963. Comparisons of plant productivity. Biological Reviews 38: 385–425. Google Scholar
  58. Ziegler, S., and R. Benner. 1999. Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Marine Ecology Progress Series 180: 149–160.CrossRefGoogle Scholar
  59. Zieman, J.C., G.W. Thayer, M.B. Robblee, and R.T. Zieman. 1979. Production and export of sea grasses from a tropical bay. In Ecological Processes in Coastal and Marine Systems, ed. R. J. Livingston, 21-33. New York: Plenum Press.Google Scholar
  60. Zieman, J.C., and R.G. Wetzel. 1980. Productivity in seagrasses: Methods and rates. In Handbook of Seagrass Biology: An Ecosystem Perspective, ed. R.C. Phillips and C.P. McRoy, 87-116. New York: Garland STPM Press.Google Scholar
  61. Zieman, J.C., J.W. Fourqurean, and T.A. Frankovich. 1999. Seagrass die-off in Florida Bay: Long-term trends in abundance and growth of turtle grass,Thalassia testudinum. Estuaries 22: 460–470.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2016

Authors and Affiliations

  • Jason L. Howard
    • 1
    Email author
  • Alex Perez
    • 1
  • Christian C. Lopes
    • 1
  • James W. Fourqurean
    • 1
  1. 1.Seagrass Ecosystem Research Laboratory, Department of Biological Sciences and Southeast Environmental Research CenterFlorida International UniversityMiamiUSA

Personalised recommendations