Estuaries and Coasts

, Volume 39, Issue 1, pp 138–144 | Cite as

Estimating Seagrass Community Metabolism Using Benthic Chambers: The Effect of Incubation Time

  • Irene OlivéEmail author
  • João Silva
  • Monya M. Costa
  • Rui Santos


Seagrass meadows are highly productive ecosystems that provide high-value ecosystem services and significantly contribute to carbon sequestration. Net community production (NCP) and community respiration (CR) in seagrass meadows are usually estimated from changes in oxygen concentration during in situ incubations in benthic chambers. Nevertheless, incubation chambers prevent water renovation, thus leading to an increase in pH and O2 and a possible super-saturation inside the chamber, particularly during daytime at high irradiances. We tested the effect of incubation time on seagrass meadows NCP using benthic chambers in a pristine Posidonia oceanica meadow in Corsica, France. Incubations lasting 1.5–2, 3–5, 12, and 24 h were conducted along the day. The results showed that NCP closely follows dial irradiance pattern, with maximum NCP values (23.1 ± 2.8 mmol O2 m−2 h−1) obtained for 1.5-2 h incubations at solar noon. A significant underestimation of NCP budgets was detected with increasing incubation times. When compared to 1.5-2 h incubations, the daylight NCP values obtained for 3-5 h and 12 h incubations underestimated NCP by 24 and 44 %, respectively, while 12 h night incubations underestimated CR by 63 %. When daily budgets were estimated, NCP calculated from 12 and 24 h incubations, the most used incubation times to estimate NCP in P. oceanica, underestimated it by 19 and 76 %, respectively, when compared to the daily budget obtained from 1.5-2 h incubations. Other factors, such as chamber volume and enclosed biomass, in conjunction with incubation time, are also discussed. We showed here that the values of P. oceanica NCP presently reported in the literature may be considerably underestimated. The role of this community as a key carbon sink in the Mediterranean may thus be underrated.


Incubation time Net community production Community respiration Community metabolism Seagrasses 



This work was conducted at the “Station de Recherches Sous-marines et Océanographiques de Stareso” in the context of a Training School promoted by the COST Action ES0906 “Seagrass productivity from genes to ecosystem management.” We thank the staff of the station and very especially its director, Dr. Pierre Lejeune for the wonderful local support. IO was supported by Fundação para a Ciência e a Tecnologia post-doctoral fellowship (SFRH/BPD/71129/2010) from the Portuguese Government. MC was supported by Fundação para a Ciência e a Tecnologia PhD grant (SFRH/BD/64590/2009) from the Portuguese Government. This paper is also a contribution to the project HighGrass (PTDC/MAR-EST/3687/2012).


  1. Apostolaki, E.T., M. Holmer, N. Marbà, and I. Karakassis. 2010a. Metabolic imbalance in coastal vegetated (Posidonia oceanica) and unvegetated benthic ecosystems. Ecosystems 13: 459–471.CrossRefGoogle Scholar
  2. Apostolaki, E.T., M. Holmer, N. Marbà, and I. Karakassis. 2010b. Degrading seagrass (Posidonia oceanica) ecosystems: a source of dissolved matter to the Mediterranean. Hydrobiologia 649: 13–23.CrossRefGoogle Scholar
  3. Barrón, C., and C.M. Duarte. 2009. Dissolved organic matter release in a Posidonia oceanica meadow. Marine Ecology Progress Series 374: 75–84. doi: 10.3354/meps07715.CrossRefGoogle Scholar
  4. Barrón, C., N. Marbà, J. Terrados, H. Kennedy, and C.M. Duarte. 2004. Community metabolism and carbon budget along a gradient of seagrass (Cymodocea nodosa) colonization. Limnology and Oceanography 49: 1642–1651.CrossRefGoogle Scholar
  5. Barrón, C., C.M. Duarte, M. Frankignoulle, and A.V. Borges. 2006. Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica) meadow. Estuaries and Coasts 29: 417–426.CrossRefGoogle Scholar
  6. Beer, S., M. Mtolera, T. Lyimo, and M. Björk. 2006. The photosynthetic performance of the tropical seagrass Halophila ovalis in the upper intertidal. Aquatic Botany 84: 367–371. doi: 10.1016/j.aquabot.2005.11.007.CrossRefGoogle Scholar
  7. Brewer, P.G., and E.T. Peltzer. 2009. Limits to marine life. Science 324: 347–348.CrossRefGoogle Scholar
  8. Buapet, P., L.M. Rasmusson, M. Gullstrom, and M. Bjork. 2013. Photorespiration and carbon limitation determine productivity in temperate seagrasses. PLoS ONE 8: e83804. doi: 10.1371/journal.pone.0083804.CrossRefGoogle Scholar
  9. Champenois, W., and A.V. Borges. 2012. Seasonal and interannual variations of community metabolism rates of a Posidonia oceanica seagrass meadow. Limnology and Oceanography 57: 347–361. doi: 10.4319/lo.2012.57.1.0347.Google Scholar
  10. Duarte, C.M., and C.L. Chiscano. 1999. Seagrass biomass and production: a reassessment. Aquatic Botany 65: 159–174.CrossRefGoogle Scholar
  11. Duarte, C.M., J.J. Middelburg, and N. Caraco. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2: 1–8.CrossRefGoogle Scholar
  12. Duarte, C.M., N. Marbà, E. Gacia, J.W. Fourqurean, J. Beggins, C. Barrón, and E.T. Apostolaki. 2010. Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles 24: GB4032. doi: 10.1029/2010gb003793.CrossRefGoogle Scholar
  13. Dunton, K.H., and D.A. Tomasko. 1994. In-situ photosynthesis in the seagrass Halodule-wrightii in a hypersaline subtropical lagoon. Marine Ecology Progress Series 107: 281–293.CrossRefGoogle Scholar
  14. Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marba, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, D. Krause-Jensen, K.J. McGlathery, and O. Serrano. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505–509.CrossRefGoogle Scholar
  15. Frankignoulle, M., and J.M. Bouquegneau. 1987. Seasonal variation of the diel carbon budget of a marine macrophyte ecosystem. Marine Ecology Progress Series 38: 197–199.CrossRefGoogle Scholar
  16. Frankignoulle, M., and A. Distèche. 1984. CO2 chemistry in the water column above a Posidonia seagrass bed and related air-sea exchanges. Oceanologica Acta 7: 209–219.Google Scholar
  17. Gacia, E., N. Marbà, J. Cebrián, R. Vaquer-Sunyer, N. Garcias-Bonet, and C.M. Duarte. 2012. Thresholds of irradiance for seagrass Posidonia oceanica meadow metabolism. Marine Ecology Progress Series 466: 69–79. doi: 10.3354/meps09928.CrossRefGoogle Scholar
  18. Gazeau, F., C.M. Duarte, J.P. Gattuso, C. Barrón, N. Navarro, S. Ruiz, Y.T. Prairie, M. Calleja, B. Delille, M. Frankignoulle, and A.V. Borges. 2005. Whole-system metabolism and CO2 fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean). Biogeosciences 2: 43–60.CrossRefGoogle Scholar
  19. Geigenberger, P., A.R. Fernie, Y. Gibon, M. Christ, and M. Stitt. 2000. Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biological Chemistry 381: 723–740.CrossRefGoogle Scholar
  20. Gobert, S., S. Sartoretto, V. Rico-Raimondino, B. Andral, A. Chery, P. Lejeune, and P. Boissery. 2009. Assessment of the ecological status of Mediterranean French coastal waters as required by the Water Framework Directive using the Posidonia oceanica Rapid Easy Index: PREI. Marine Pollution Bulletin 58: 1727–1733.CrossRefGoogle Scholar
  21. Heber, U., R. Bligny, P. Streb, and R. Douce. 1996. Photorespiration is essential for the protection of the photosynthetic apparatus of C3 plants against photoinactivation under sunlight. Botanica Acta 109: 307–315. doi: 10.1111/j.1438-8677.1996.tb00578.x.CrossRefGoogle Scholar
  22. Hendriks, I.E., Y.S. Olsen, L. Ramajo, L. Basso, A. Steckbauer, T.S. Moore, J. Howard, and C.M. Duarte. 2014. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11: 333–346. doi: 10.5194/bg-11-333-2014.CrossRefGoogle Scholar
  23. Holmer, M., C.M. Duarte, H.T.S. Boschker, and C. Barrón. 2004. Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquatic Microbial Ecology 36: 227–237.CrossRefGoogle Scholar
  24. Ibarra-Obando, S.E., S.V. Smith, M. Poumian-Tapia, V. Camacho-Ibar, J.D. Carriquiry, and M. Montes-Hugo. 2004. Benthic metabolism in San Quintin Bay, Baja California, Mexico. Marine Ecology Progress Series 283: 99–112. doi: 10.3354/meps283099.CrossRefGoogle Scholar
  25. Invers, O., J. Romero, and M. Pérez. 1997. Effects of pH on seagrass photosynthesis: a laboratory and field assessment. Aquatic Botany 59: 185–194.CrossRefGoogle Scholar
  26. Labasque, T., C. Chaumery, A. Aminot, and G. Kergoat. 2004. Spectrophotometric Winkler determination of dissolved oxygen: re-examination of critical factors and reliability. Marine Chemistry 88: 53–60.CrossRefGoogle Scholar
  27. Laffers, R. Error propagation calculator. 2010.
  28. Laffoley, D. d. A., Grimsditch, G. 2009. The management of natural coastal carbon sinks. Gland, Switzerland.Google Scholar
  29. Legendre, P. 2011. lmodel2: Model II regression. R package version 1.7-1. Available from:
  30. Major, K.M., and K.H. Dunton. 2000. Photosynthetic performance in Syringodium filiforme: seasonal variation in light-harvesting characteristics. Aquatic Botany 68: 249–264.CrossRefGoogle Scholar
  31. Martin, S., J. Clavier, J.-M. Guarini, L. Chauvaud, C. Hily, J. Grall, G. Thouzeau, F. Jean, and J. Richard. 2005. Comparison of Zostera marina and maerl community metabolism. Aquatic Botany 83: 161–174. doi: 10.1016/j.aquabot.2005.06.002.CrossRefGoogle Scholar
  32. Mateo, M.A., and O. Serrano. 2011. The carbon sink associated to Posidonia oceanica. In Mediterranean seagrasses: resilience and contribution to the attenuation of climate change, ed. G. Pergent et al. Málaga: IUCN Mediterranee.Google Scholar
  33. Mateo, M.A., J. Cebrián, K. Dunton, and T. Mutchler. 2006. Carbon flux in seagrass ecosystems. In Seagrasses: biology, ecology and conservation, ed. A.W.D. Larkum, R.J. Orth, and C.M. Duarte, 159–192. Netherlands: Springer.Google Scholar
  34. Nellemann, C., E. Corcoran, C.M. Duarte, L. Valdés, C. DeYoung, L. Fonseca, and G. Grimsditch. 2009. Blue Carbon. The role of healthy oceans in binding carbon. Norway: UNEP, FAO and IOC/UNESCO.Google Scholar
  35. Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck, Jr. A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. Bioscience 56: 987–996.Google Scholar
  36. Ouisse, V., A. Migné, and D. Davoult. 2014. Comparative study of methodologies to measure in situ the intertidal benthic community metabolism during immersion. Estuarine, Coastal and Shelf Science 136: 19–25.CrossRefGoogle Scholar
  37. Peterson, B.J. 1980. Aquatic primary productivity and the 14C-CO2 method: a history of the productivity problem. Annual Review of Ecology and Systematics 11: 359–385.CrossRefGoogle Scholar
  38. Plus, M., J.-M. Deslous-Paoli, I. Auby, and Fo. Dagault. 2001. Factors influencing primary production of seagrass beds (Zostera noltii Hornem.) in the Thau lagoon (French Mediterranean coast). Journal of Experimental Marine Biology and Ecology 259: 63–84. doi: 10.1016/S0022-0981(01)00223-4.CrossRefGoogle Scholar
  39. R Development Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  40. Santos, R., J. Silva, A. Alexandre, N. Navarro, C. Barrón, and C.M. Duarte. 2004. Ecosystem metabolism and carbon fluxes of a tidal-dominated coastal lagoon. Estuaries 27: 977–985.CrossRefGoogle Scholar
  41. Silva, J., R. Santos, M.L. Calleja, and C.M. Duarte. 2005. Submerged versus air-exposed intertidal macrophyte productivity: from physiological to community-level assessments. Journal of Experimental Marine Biology and Ecology 317: 87–95.CrossRefGoogle Scholar
  42. Silva, J., P. Feijoo, and R. Santos. 2008. Underwater measurements of carbon dioxide evolution in marine plant communities: A new method. Estuarine, Coastal and Shelf Science 78: 827–830.CrossRefGoogle Scholar
  43. Touchette, B.W., and J.M. Burkholder. 2000. Overview of the physiological ecology of carbon metabolism in seagrass. Journal of Experimental Marine Biology and Ecology 250: 169–205.CrossRefGoogle Scholar
  44. Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences 106: 12377–12381. doi: 10.1073/pnas.0905620106.CrossRefGoogle Scholar
  45. Zimmerman, R.C., R.D. Smith, and R.S. Alberte. 1989. Thermal acclimation and whole-plant carbon balance in Zostera marina L. (eelgrass). Journal of Experimental Marine Biology and Ecology 130: 93–109. doi: 10.1016/0022-0981(89)90197-4.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2015

Authors and Affiliations

  • Irene Olivé
    • 1
    Email author
  • João Silva
    • 1
  • Monya M. Costa
    • 1
  • Rui Santos
    • 1
  1. 1.ALGAE - Marine Ecology Research GroupCCMar - Center of Marine SciencesFaroPortugal

Personalised recommendations