Advertisement

Estuaries and Coasts

, Volume 39, Issue 3, pp 855–865 | Cite as

Comparative Feeding Ecology of Shorebirds Wintering at Banc d’Arguin, Mauritania

  • Pedro M. LourençoEmail author
  • Teresa Catry
  • Theunis Piersma
  • José P. Granadeiro
Article

Abstract

Limited knowledge of shorebird feeding ecology in the tropics hinders interpretation of considerable changes in numbers recently observed at the most important shorebird nonbreeding area along the East Atlantic Flyway, the Banc d’Arguin in Mauritania. We used droppings and video recordings to compare the diet and foraging behaviour of six shorebird species at Banc d’Arguin: dunlin, sanderling, red knot, ringed plover, grey plover and bar-tailed godwit. In four of those species, the detail achieved in prey identification allowed us to calculate niche width and foraging niche overlap. Sanderling and ringed plover consumed a wide range of macroinvertebrate taxa, while red knot consumed mainly bivalves with some gastropods, and both grey plover and bar-tailed godwit fed mainly on polychaete worms. A large proportion of dunlin droppings had no recognizable food items, suggesting a soft-bodied prey that we could not identify. Dunlin was the only strictly tactile forager, while sanderling and red knot used both visual and tactile methods. The remaining species resort to visual cues for catching prey, even though tactile cues may be important for bar-tailed godwits. Dunlin, sanderling, red knot and ringed plover all showed relatively narrow trophic niches and non-significant levels of foraging niche overlap. Overall, the diet of each shorebird was broadly similar to that reported from other parts of their wintering ranges, with more gastropods in the red knot diet than previously described. Our data suggest that the high shorebird densities at Banc d’Arguin despite low benthic food densities (Hydrobiologia 258:211-222, 1993a; Journal of Sea Research 60:235-243, 2008) may result partly from partitioning of available resources via narrow trophic niches with little overlap. Given these distinct trophic niches, the widespread declines in shorebird numbers at Banc d’Arguin may reflect changes in a wide range of prey types and suggest a shift in the overall properties of this unique ecosystem.

Keywords

Benthic macroinvertebrates Diet overlap Niche width Tactile forager Visual forager 

Notes

Acknowledgments

Expeditions to Banc d’Arguin received logistic support from Parc National du Banc d’Arguin (PNBA). We thank the director of PNBA, to Lemhaba Ould Yarba research officer of the Park, and to the PNBA’s staff in Iwik. Dr António Araújo (Fondation Internationale du Banc d’Arguin—FIBA) provided crucial support and advice during our expedition preparation, and colleagues from NIOZ Royal Netherlands Institute for Sea Research, particularly Dr Piet van den Hout and Dr Jan van Gils, are thanked for their help with logistics and sharing their research expertise at PNBA. We would also like to thank José Alves for his help during field work in Mauritania, Camilo Carneiro who collaborated both in field sampling and in the analysis of video recordings, and Mohamed Salem for help identifying benthic macroinvertebrates. Two anonymous reviewers and the associate editor provided constructive comments on an earlier version of this paper. This study was supported by Fundação para a Ciência e Tecnologia (FCT), through Project “Invisible Links” (PTDC/MAR/119920/2010), strategic project UID/AMB/50017/2013 and postdoctoral grants to TC (SFRH/BPD/102255/2014) and PML (SFRH/BPD/84237/2012). The work by TP at BdA has been facilitated by operational grants from Royal NIOZ, by the NWO-ALW TOP grant ‘Shorebirds in space’ (854.11.004) and an NWO WOTRO Integrated Programme grant (W.01.65.221.00).

References

  1. Barbosa, A., and E. Moreno. 1999. Evolution of foraging strategies in shorebirds: an ecomorphological approach. Auk 116: 712–725.CrossRefGoogle Scholar
  2. Bocher, P., F. Robin, J. Kojadinovic, P. Delaporte, P. Rousseau, C. Dupuy, and P. Bustamante. 2014. Trophic resource partitioning within a shorebird community feeding on intertidal mudflat habitats. Journal of Sea Research 92: 115–124.CrossRefGoogle Scholar
  3. Catry, T., J.A. Alves, J.A. Gill, T.G. Gunnarsson, and J.P. Granadeiro. 2014. Individual specialization in a shorebird population with narrow foraging niche. Acta Oecologica 56: 56–65.CrossRefGoogle Scholar
  4. Catry, T., P.M. Lourenço, R.J. Lopes, C. Carneiro, J.A. Alves, J. Costa, H. Rguibi-Idrissi, S. Bearhop, T. Piersma, and J.P. Granadeiro. 2015. Structure and functioning of intertidal food webs along an avian flyway: a comparative approach using stable isotopes. Functional Ecology. doi: 10.1111/1365-2435.12506.Google Scholar
  5. Delany, S., D. Scott, T. Dodman, and D. Stroud. 2009. An atlas of wader populations in Africa and western Eurasia. Wageningen: Wetlands International.Google Scholar
  6. Dias, M.P., J.P. Granadeiro, and J.M. Palmeirim. 2009. Searching behaviour of foraging waders: does feeding success influence their walking? Animal Behaviour 77: 1203–1209.CrossRefGoogle Scholar
  7. Duijns, S., N.A. Hidayati, and T. Piersma. 2013. Bar-tailed godwits Limosa l. lapponica eat polychaetes worms wherever they winter in Europe. Bird Study 60: 509–517.CrossRefGoogle Scholar
  8. Duijns, S., J.A. van Gils, B. Spaans, J. ten Horn, M. Brugge, and T. Piersma. 2014. Sex-specific winter distribution in a sexually dimorphic shorebird is explained by resource partitioning. Ecology and Evolution 4: 4009–4018.CrossRefGoogle Scholar
  9. Elner, R.W., P.G. Beninger, D.L. Jackson, and T.M. Potter. 2005. Evidence of a new feeding mode in western sandpiper (Calidris mauri) and dunlin (Calidris alpina) based on bill and tongue morphology and ultrastructure. Marine Biology 146: 1223–1234.CrossRefGoogle Scholar
  10. Engelmoer, M., T. Piersma, W. Altenburg, and R. Mes. 1984. The Banc d’Arguin (Mauritania). In Coastal waders and wildfowl in winter, ed. P.R. Evans, J.D. Goss-Custard, and W.G. Hale, 293–310. Cambridge: Cambridge University Press.Google Scholar
  11. Gauch, H.G. 1982. Multivariate analysis in community ecology. Cambridge studies in ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Goss-Custard, J.D., Jones RE, and P.E. Newbery. 1977. The ecology of the wash. I. Distribution and diet of wading birds (Charadrii). Journal of Applied Ecology 14: 681–700.CrossRefGoogle Scholar
  13. Honkoop, P.J.C., E.M. Berghuis, S. Holthuijsen, M.S.S. Lavaleye, and T. Piersma. 2008. Molluscan assemblages of seagrass-covered and bare intertidal flats on the Banc d’Arguin, Mauritania, in relation to characteristics of sediment and organic matter. Journal of Sea Research 60: 235–243.CrossRefGoogle Scholar
  14. Hurlbert, S.H. 1978. The measurement of niche overlap and some relatives. Ecology 59: 67–77.CrossRefGoogle Scholar
  15. Kaeriyama, H., and T. Ikeda. 2002. Body allometry and developmental characteristics of the three dominant pelagic ostracods (Discoconchoecia pseudodiscophora, Orthoconchoecia haddoni and Metaconchoecia skogsbergi) in the Oyashio region, western North Pacific. Plankton Biology and Ecology 49: 97–100.Google Scholar
  16. Kalejta, B. 1993. Diet of shorebirds at the Berg River estuary, South Africa: spatial and temporal variation. Ostrich 64: 123–133.CrossRefGoogle Scholar
  17. Kober, K., and F. Bairlein. 2009. Habitat choice and niche characteristics under poor food conditions. A study on migratory nearctic shorebirds in the intertidal flats of Brazil. Ardea 97: 31–42.CrossRefGoogle Scholar
  18. Krebs, C.J. 1999. Ecological methodology, 2nd ed. Menlo Park: Addison-Welsey Educational Publishers.Google Scholar
  19. Kuwae, T., E. Miyoshi, S. Hosokawa, K. Ichimi, J. Hosoya, T. Amano, T. Moriya, M. Kondoh, R.C. Ydenberg, and R.W. Elner. 2012. Variable and complex food web structures revealed by exploring missing trophic links between birds and biofilm. Ecology Letters 15: 347–356.CrossRefGoogle Scholar
  20. Levins, R. 1968. Evolution in changing environments. Princeton: Princeton University Press.Google Scholar
  21. Leyrer, J., T. Lok, M. Brugge, A. Dekinga, B. Spaans, J.A. van Gils, B.K. Sandercock, and T. Piersma. 2012. Small-scale demographic structure suggests preemptive behavior in a flocking shorebird. Behavioral Ecology 23: 1226–1233.CrossRefGoogle Scholar
  22. Lifjeld, J.T. 1984. Prey selection in relation to body size and bill length of five species of waders feeding in the same habitat. Ornis Scandinavica 15: 217–226.CrossRefGoogle Scholar
  23. Lourenço, P.M. 2007. Analysing faecal samples of ragworm predators: not just a matter of counting mandibles. Ardea 95: 151–155.CrossRefGoogle Scholar
  24. Lourenço, P.M., A. Silva, C.D. Santos, A.C. Miranda, J.P. Granadeiro, and J.M. Palmeirim. 2008. The energetic importance of night foraging for waders wintering in a temperate estuary. Acta Oecologica 34: 122–129.CrossRefGoogle Scholar
  25. Martins, R.J., T. Catry, C.D. Santos, J.M. Palmeirim, and J.P. Granadeiro. 2013. Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a south European estuary: improved feeding conditions for northward migrants. PLoS ONE 8: e81174. doi: 10.1371/journal.pone.0081174.CrossRefGoogle Scholar
  26. Masero, J.A., S.M. Estrella, and J.M. Sánchez-Guzmán. 2007. Behavioural plasticity in foraging mode of typical plovers. Ardea 95: 259–265.CrossRefGoogle Scholar
  27. Mathur, D. 1977. Food habits and competitive relationships of the bandfish shiner in Halawakee Creek, Alabama. American Midland Naturalist 97: 89–100.CrossRefGoogle Scholar
  28. Nebel, S. 2005. Latitudinal clines in bill length and sex ratio in a migratory shorebird: a case of resource partitioning? Acta Oecologica 28: 33–38.CrossRefGoogle Scholar
  29. Onrust, J., J. de Fouw, T. Oudman, M. van der Geest, T. Piersma, and J.A. van Gils. 2013. Red knot diet reconstruction revisited: context dependence revealed by experiments at Banc d’Arguin, Mauritania. Bird Study 60: 298–307.CrossRefGoogle Scholar
  30. Oudman, T., J. Onrust, J. de Fouw, B. Spaans, T. Piersma, and J.A. van Gils. 2014. Digestive capacity and toxicity cause mixed diets in red knots that maximize energy intake rate. American Naturalist 183: 650–659.CrossRefGoogle Scholar
  31. Perez-Hurtado, A., J.D. Goss-Custard, and F. Garcia. 1997. Diet of wintering waders in Cadiz Bay, southwest Spain. Bird Study 44: 45–52.CrossRefGoogle Scholar
  32. Piersma, T. 1982a. Macrobenthic fauna of the intertidal flats. In Wintering waders on the Banc d’Arguin, Mauritania, ed. W. Altenburg, M. Engelmoer, R. Mes, and T. Piersma, 49–66. Leiden: Stichting Veth tot steun aan Waddenonderzoek.Google Scholar
  33. Piersma, T. 1982b. Foraging of bar-tailed godwits. In Wintering waders on the Banc d’Arguin, Mauritania, ed. W. Altenburg, M. Engelmoer, R. Mes, and T. Piersma, 49–66. Leiden: Stichting Veth tot steun aan Waddenonderzoek.Google Scholar
  34. Piersma, T. 2007. Using the power of comparison to explain habitat use and migration strategies of shorebirds worldwide. Journal of Ornithology 148(Suppl. 1): S45–S59.CrossRefGoogle Scholar
  35. Piersma, T. 2011. From spoonbill to spoon-billed sandpiper: the perceptual dimensions to the niche. Ibis 153: 659–661.CrossRefGoogle Scholar
  36. Piersma, T. 2012. What is habitat quality? Dissecting a research portfolio on shorebirds. In Birds and habitat: relationships in changing landscapes, ed. R.J. Fuller, 383–407. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Piersma, T., R. Hoekstra, A. Dekinga, A. Koolhaas, P. Wolf, P. Battley, and P. Wiersma. 1993a. Scale and intensity of intertidal habitat use by knots Calidris canutus in the Western Wadden Sea in relation to food, friends and foes. Netherlands Journal of Sea Research 31: 331–357.CrossRefGoogle Scholar
  38. Piersma, T., P. de Goeij, and I. Tulp. 1993b. An evaluation of intertidal feeding habitats from a shorebird perspective: towards relevant comparisons between temperate and tropical mudflats. Netherlands Journal of Sea Research 31: 503–512.CrossRefGoogle Scholar
  39. Piersma, T., R. van Aelst, K. Kurk, H. Berkhoudt, and L.R.M. Maas. 1998. A new pressure sensory mechanism for prey detection in birds: the use of principles of seabed dynamics? Proceedings of the Royal Society of London B 265: 1377–1383.CrossRefGoogle Scholar
  40. Quaintenne, G., P. Bocher, A. Ponsero, E. Caillot, and E. Feunteun. 2014. Contrasting benthos communities and prey selection by red knot Calidris canutus in three nearby bays on the Channel Coast. Ardea 101: 87–98.CrossRefGoogle Scholar
  41. Robert, M., and R. McNeil. 1989. Comparative day and night feeding strategies of shorebirds species in a tropical environment. Ibis 131: 69–79.CrossRefGoogle Scholar
  42. Robin, F., T. Piersma, F. Meunier, and P. Bocher. 2013. Expansion into an herbivorous niche by a customary carnivore: black-tailed godwits feeding on rhizomes of Zostera at a newly established wintering site. Condor 115: 340–347.CrossRefGoogle Scholar
  43. Salem, M.V.A., M. van der Geest, T. Piersma, Y. Saoud, and J.A. van Gils. 2014. Seasonal changes in mollusc abundance in a tropical intertidal ecosystem, Banc d’Arguin (Mauritania): testing the ‘depletion by shorebirds’ hypothesis. Estuarine, Coastal and Shelf Science 136: 26–34.CrossRefGoogle Scholar
  44. Santos, C.D., J.M. Palmeirim, and J.P. Granadeiro. 2010. Choosing the best foraging microhabitats: individual skills constrain the choices of dunlins Calidris alpina. Journal of Avian Biology 41: 18–24.CrossRefGoogle Scholar
  45. Scheiffarth, G. 2001. The diet of bar-tailed godwits Limosa lapponica in the Wadden Sea: combining visual observations and faeces analysis. Ardea 89: 481–494.Google Scholar
  46. Schoener, T.W. 1968. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49: 704–726.CrossRefGoogle Scholar
  47. Stroud, D.A., A. Baker, D.E. Blanco, N. Davidson, S. Delany, B. Ganter, R. Gill, P. González, L. Haanstra, R.I.G. Morrison, T. Piersma, D. Scott, O. Thorup, R. West, J. Wilson, and C. Zöckler. 2006. The conservation and population status of the world’s waders at the turn of the millennium. In Waterbirds around the world, ed. G.C. Boere, C. Galbraith, and D.A. Stroud, 643–648. Edinburgh: The Stationery Office.Google Scholar
  48. Swennen, C. 1990. Oystercatchers feeding on giant blood cockles in the Banc d’Arguin, Mauritania. Ardea 78: 53–62.Google Scholar
  49. Turpie, J.K., and P.A.R. Hockey. 1993. Comparative diurnal and nocturnal foraging behaviour and energy intake of premigratory grey plovers Pluvialis squatarola and whimbrels Numenius phaeopus in South Africa. Ibis 135: 156–165.CrossRefGoogle Scholar
  50. van de Kam, J., B. Ens, T. Piersma, and L. Zwarts. 2004. Shorebirds. An illustrated behavioural ecology. Utrecht: KNNV Publishers.Google Scholar
  51. van den Hout, P., J.A. van Gils, F. Robin, M. van der Geest, A. Dekinga, and T. Piersma. 2014. Interference from adults forces young knots to forage for longer and in dangerous places. Animal Behaviour 88: 137–146.CrossRefGoogle Scholar
  52. van Gils, J.A., M. van der Geest, C. Kraan, E.O. Folmer, E.J. Jansen, and T. Piersma. 2009. How the carrying capacity of the Wadden Sea regulates the number of wintering waders at Banc d’Arguin. Limosa 82: 134–140.Google Scholar
  53. van Gils, J.A., M. van der Geest, J. Leyrer, T. Oudman, T. Lok, J. Onrust, J. de Fouw, T. van der Heide, P.J. van den Hout, B. Spaans, A. Dekinga, M. Bruge, and T. Piersma. 2013. Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird. Proceedings of the Royal Society of London B 280: 20130861.CrossRefGoogle Scholar
  54. Wijnsma, G., W. Wolff, A. Meijboom, P. Duiven, and J. de Vlas. 1999. Species richness and distribution of benthic tidal fauna of the Banc d’Arguin, Mauritania. Oceanologica Acta 22: 233–243.CrossRefGoogle Scholar
  55. Wolff, W.J., J. van der Land, P.H. Nienhuis, and P.A.W.J. de Wilde. 1993a. The functioning of the ecosystem of the Banc d’Arguin, Mauritania: a review. Hydrobiologia 258: 211–222.CrossRefGoogle Scholar
  56. Wolff, W.J., A.G. Duiven, P. Duiven, P. Esselink, A. Gueye, A. Meijboom, G. Moerland, and J. Zegers. 1993b. Biomass of macrobenthic tidal fauna of the Banc d’Arguin, Mauritania. Hydrobiologia 258: 151–163.CrossRefGoogle Scholar
  57. Wootton, J.T. 1997. Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecological Monographs 67: 45–64.CrossRefGoogle Scholar
  58. Zwarts, L. 1990. Increased prey availability drives premigration hyperphagia in whimbrels and allows them to leave the Banc d’Arguin, Mauritania, in time. Ardea 78: 279–300.Google Scholar
  59. Zwarts, L., and S. Dirksen. 1990. Digestive bottleneck limits the increase in food intake of whimbrels preparing their departure from the Banc d’Arguin, Mauritania, in spring. Ardea 78: 257–278.Google Scholar
  60. Zwarts, L., A.M. Blomert, B.J. Ens, R. Hupkes, and T.M. van Spanje. 1990. Why do waders reach high feeding densities on the intertidal flats of the Banc d’Arguin, Mauritania. Ardea 78: 39–52.Google Scholar
  61. Zwarts, L., J. van der Kamp, O. Overdijk, T.M. van Spanie, R. Veldkamp, R. West, and M. Wright. 1998. Wader count of the Banc d’Arguin, Mauritania, in January/February 1997. Wader Study Group Bulletin 86: 55–69.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2015

Authors and Affiliations

  1. 1.Centro de Estudos do Ambiente e do Mar (CESAM)/Museu Nacional de História Natural e da CiênciaUniversidade de LisboaLisbonPortugal
  2. 2.Centro de Estudos do Ambiente e do Mar (CESAM)/Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  3. 3.NIOZ Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
  4. 4.Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands

Personalised recommendations