Advertisement

Estuaries and Coasts

, Volume 39, Issue 3, pp 593–604 | Cite as

Evaluation of Trends and Changes in the Gulf of Gdańsk Ecosystem—an Integrated Approach

  • M. T. Tomczak
  • L. Szymanek
  • M. Pastuszak
  • W. Grygiel
  • M. Zalewski
  • S. Gromisz
  • A. Ameryk
  • J. Kownacka
  • I. Psuty
  • E. Kuzebski
  • R. Grzebielec
  • P. Margoński
Article

Abstract

An integrated trend assessment was conducted for the Gulf of Gdańsk (GoG), Baltic Sea for the period 1994–2010 to describe changes and potentially important drivers of the ecosystem. We found changes in the biota, including an increase in open sea taxa (flatfish, sprat and cod), a decrease in typical coastal species such as eelpout and lumpfish and an increase in primary production. The analyses further suggest that changes in the food web were driven by a combination of anthropogenic pressures (e.g., nutrient loadings and fisheries) and possible interactions with climatic disturbance. Our analyses show that significant changes occurred in the GoG ecosystem between 1994 and 2010. The primary drivers and mechanisms of these changes are discussed. We describe this alteration of the GoG within the context of similar temporal patterns identified in adjacent areas.

Keywords

Gulf of Gdańsk Ecosystem change Integrated trend assessment 

Notes

Acknowledgments

We are grateful to our colleagues from the National Marine Fisheries Research Institute (former Sea Fisheries Institute in Gdynia) for help with the data collection and the ICES/HELCOM Working Group on Integrated Assessment of the Baltic Sea and the Baltic NEST Institute for useful discussions. The Polish zooplankton data were partly collected within the Polish National Monitoring Programme, and permission to analyse these data was granted by the Chief Inspector of Environmental Protection (http://www.gios.gov.pl/). The study support came from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) within the project “Regime Shifts in the Baltic Sea Eco-system—Modeling Complex Adaptive Ecosystems and Governance Implications.” We wish to thank two reviewers for useful comments and suggestions and Michelle McCrackin for language correction.

Supplementary material

12237_2015_26_MOESM1_ESM.xlsx (13 kb)
Table S1 Metadata - time series used for the integrated ecosystem analysis of the GoG. (XLSX 13 kb)
12237_2015_26_MOESM2_ESM.pptx (119 kb)
Figure S1 Data anomalies. (PPTX 119 kb)

References

  1. Alheit, J., C. Möllmann, J. Dutz, G. Kornilovs, P. Loewe, V. Mohrholz, and N. Wasmund. 2005. Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. ICES Journal of Marine Science 62: 1205–1215. doi: 10.1016/j.icesjms.2005.04.024.CrossRefGoogle Scholar
  2. Blady, W. 2002. Polish fishing fleet during the 1921–2001 period. Gdynia: Sea Fisheries Institute, 341 pp. (in Polish).Google Scholar
  3. Casini, M., J. Hjelm, J.C. Molinero, J. Lovgren, M. Cardinale, V. Bartolino, A. Belgrano, and G. Kornilovs. 2009. Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106: 197–202. doi: 10.1073/pnas.0806649105.CrossRefGoogle Scholar
  4. Collie, J.S., K. Richardson, and J.H. Steele. 2004. Regime shifts: can ecological theory illuminate the mechanisms. Progress in Oceanography 60: 281–302.CrossRefGoogle Scholar
  5. Cury, P., and L. Shannon. 2004. Regime shifts in upwelling ecosystems: observed changes and possible mechanisms in the northern and southern Benguela. Progress in Oceanography 60(2): 223–243.CrossRefGoogle Scholar
  6. Cyberska, B., and W. Krzymiński. 1988. Extension of the Vistula River water in the Gulf of Gdańsk. Proceedings of the 16th Conference of Baltic Oceanographers. Vol. 1, pp. 290–304. Institute of Marine Research, Kiel University.Google Scholar
  7. Daskalov, G.M., A.N. Grishin, S. Rodionov, and V. Mihneva. 2007. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proceedings of the National Academy of Sciences 104(25): 10518–10523.CrossRefGoogle Scholar
  8. Diekmann, R. and C. Möllmann (eds.) 2010. Integrated ecosystem assessments of seven Baltic Sea areas covering the last three decades ICES Cooperative Research Report N0. 302. Authors: Lena Bergström, Rabea Diekmann, Juha Flinkman, Anna Gårdmark, Martin Linde-gren, Bärbel Müller-Karulis, Christian Möllmann, Maris Plikshs, Arno Põllumäe. 94 pp.Google Scholar
  9. Duarte, C.M., D.J. Conley, J. Carstensen, and M. Sanchez-Camacho. 2009. Return to Neverland: shirting baselines affect eutrophication restoration targets. Estuaries and Coasts 32: 29–36.CrossRefGoogle Scholar
  10. Fal, B., E. Bogdanowicz, W. Czernuszenko, I. Dobrzyńska, A. Koczyńska. 2000. Characteristic flow values of the main Polish rivers in the years 1951–1995. Materiały Badawcze, Seria: Hydrologia i Oceanologia, Instytut Meteorologii i Gospodarki Wodnej, Warszawa. No. 26, 137 pp. (in Polish).Google Scholar
  11. Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson, and C.S. Holling. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution and Systematics 35: 557–581.Google Scholar
  12. Gilpin, L.C., K. Davidson, and E. Roberts. 2004. The influence of changes in nitrogen:silicon ratios on diatom growth dynamics. Journal of Sea Research 51: 21–35.CrossRefGoogle Scholar
  13. Grelowski, A., and T. Wojewódzki. 1996. The impact of the Vistula River on the hydrological conditions in the Gulf of Gdańsk in 1994. Bulletin of the Sea Fisheries Institute 137: 23–33.Google Scholar
  14. Hare, S.R., and N.J. Mantua. 2000. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in Oceanography 47(2): 103–145.CrossRefGoogle Scholar
  15. Heymans, J.J., S. Guénette, and V. Christensen. 2007. Evaluating network analysis indicators of ecosystem status in the Gulf of Alaska. Ecosystems 10(3): 488–502.CrossRefGoogle Scholar
  16. Howard, J.A., A. Jarre, A.E. Clark, and C.L. Moloney. 2007. Application of the sequential t-test algorithm for analysing regime shifts to the southern Benguela ecosystem. African Journal of Marine Science 29(3): 437–451.CrossRefGoogle Scholar
  17. ICES 2008. Report of the ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea. CM 2008/BCC:04. 145 pp.Google Scholar
  18. ICES 2010. Report of the ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea (WGIAB), 19–23 April 2010, ICES headquarters, Copenhagen, Denmark: ICES CM 2010/SSGRSP:02. 94 pp.Google Scholar
  19. ICES 2011. Report of the ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea (WGIAB), 4–8 April 2011, Mallorca, Spain. ICES CM 2011/SSGRSP:03. 53 pp.Google Scholar
  20. ICES 2012. Report of the ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea (WGIAB), 26–30 March 2012. Stockholm, Sweden. ICES CM 012/SSGRSP:02. 178 pp.Google Scholar
  21. Jackowski, E. 2002. Fishes of the Puck Bay. Gdynia: Sea Fisheries Institute, 108 pp. (in Polish).Google Scholar
  22. Justić, D., N.N. Rabalais, and R.E. Turner. 1995. Stoichiometric nutrient balance and origin of coastal eutrophication. Marine Pollution Bulletin 30(1): 41–46.CrossRefGoogle Scholar
  23. Kemp, W.M., P. Sampou, J. Caffrey, and M. Mayer. 1990. Ammonium recycling versus denitrification in Chesapeake Bay sediments. Limnology and Oceanography 35(7): 1545–1563.CrossRefGoogle Scholar
  24. Kemp, W.M., P. Sampou, J. Garber, J. Tuttle, and W.R. Boynton. 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of benthic and planktonic respiration and physical exchange processes. Marine Ecology Progress Series 85: 137–152.CrossRefGoogle Scholar
  25. Kowalkowski, T., M. Pastuszak, J. Igras, and B. Buszewski. 2012. Differences in emission of nitrogen and phosphorus into the Oder and Vistula basins in 1995–2008—natural and anthropogenic causes (MONERIS model). Journal of Marine Systems 89: 48–60.CrossRefGoogle Scholar
  26. Kruk-Dowgiałło, E., and A. Szaniawska. 2008. Gulf of Gdansk and Puck Bay. In Ecology of Baltic Coastal waters; ecological studies, vol. 197, ed. U. Schiewer, 139–165. Berlin: Springer.CrossRefGoogle Scholar
  27. Lass, H.-U., and W. Matthäus. 2008. General oceanography of the Baltic sea. In State and Evolution of the Baltic Sea, 1952–2005, eds. Feistel R, Nausch G, Wasmund N, 5–43. Hoboken,USA: John Wiley & Sons, Inc. doi: 10.1002/9780470283134.ch2.
  28. Legendre, P., S. Dallot, and L. Legendre. 1985. Succession of species within a community: chronological clustering, with applications to marine and freshwater zooplankton. The American Naturalist 125: 257–288.Google Scholar
  29. Lehmann, A., W. Krauß, and H.-H. Hinrichsen. 2002. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus 54A: 299–316.CrossRefGoogle Scholar
  30. Lindegren, M., R. Diekmann, and C. Möllmann. 2010. Regime shifts, resilience and recovery of a cod stock. Marine Ecology Progress Series 402: 239–253.CrossRefGoogle Scholar
  31. Link, J.S., J.K.T. Brodziak, S.F. Edwards, W.J. Overholtz, D. Mountain, J.W. Jossi, T.D. Smith, and M.J. Fogarty. 2002. Marine ecosystem assessment in a fisheries management context. Canadian Journal of Fisheries and Aquatic Sciences 59: 1429–1440.CrossRefGoogle Scholar
  32. Majewski, A. 1994. Natural environmental conditions of the Gulf of Gdańsk and its surroundings. In Pollution and renewal of the Gulf of Gdańsk, ed. J. Blazejowski and D. Schuller, 35–42. Gdańsk: Gdańsk University.Google Scholar
  33. Möllmann, C., B. Müller-Karulis, G. Kornilovs, and M.A. St John. 2008. Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES Journal of Marine Science: Journal du Conseil 65(3): 302–310.CrossRefGoogle Scholar
  34. Möllmann, C., R. Diekmann, B. Muller-Karulis, G. Kornilovs, M. Plikshs, and P. Axe. 2009. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea. Global Change Biology 15: 1377–1393. doi: 10.1111/j.1365-2486.2008.01814.x.CrossRefGoogle Scholar
  35. Pastuszak, M. 1995. The hydrochemical and biological impact of the River Vistula on the Pelagic system of the Gulf of Gdańsk in 1994. I. Variability in nutrient concentrations. Oceanologia 37(2): 181–205.Google Scholar
  36. Pastuszak, M. 2012. Description of the Baltic Sea catchment area—focus on the Polish sub-catchment. In Temporal and spatial differences in emission of nitrogen and phosphorus from Polish territory to the Baltic Sea, eds. Pastuszak, M., Igras, J., 15–44. Gdynia-Puławy: National Marine Fisheries Research Institute-Institute of Soil Science and Plant Cultivation - State Research Institute-Fertilizer Research Institute.Google Scholar
  37. Pastuszak, M., K. Nagel, A. Grelowski, V. Mohrholz, and M. Zalewski. 2003. Nutrient dynamics in the Pomeranian Bay (southern Baltic): impact of the Oder River outflow. Estuaries 26(5): 1238–1254.CrossRefGoogle Scholar
  38. Pastuszak, M., P. Stålnacke, K. Pawlikowski, and Z. Witek. 2012. Response of Polish rivers (Vistula, Oder) to reduced pressure from point sources and agriculture during the transition period (1988–2008). Journal of Marine Systems 94: 157–173.CrossRefGoogle Scholar
  39. Petersen, J.K., J.W. Hansen, M.B. Laursen, P. Clausen, J. Carstensen, and D.J. Conley. 2008. Regime shift in a coastal marine ecosystem. Ecological Applications 18(2): 497–510.CrossRefGoogle Scholar
  40. Psuty-Lipska, I. 2001. Structure of benthic fish assemblages under intense exploitation in the Gulf of Gdansk. Bulletin of the Sea Fisheries Institute 3(154): 29–28.Google Scholar
  41. Rodionov, S.N. 2004. A sequential algorithm for testing climate regime shifts. Geophysical Research Letters 31: 9. doi: 10.1029/2004GL019448.
  42. Rodionov, S.N. 2006. The use of prewhitening in climate regime shift detection. Geophysical Research Letters 33: L12707. doi: 10.1029/2006GL025904
  43. Rodionov, S., and J.E. Overland. 2005. Application of a sequential regime shift detection method to the Bering Sea ecosystem. ICES Journal of Marine Science: Journal du Conseil 62(3): 328–332.CrossRefGoogle Scholar
  44. Rothschild, B.J., and L.J. Shannon. 2004. Regime shifts and fishery management. Progress in Oceanography 60(2): 397–402.CrossRefGoogle Scholar
  45. Tomczak, M.T., G.E. Dinesen, E. Hoffmann, M. Maar, and J.G. Støttrup. 2013. Integrated trend assessment of ecosystem changes in the Limfjord (Denmark): evidence of a recent regime shift? Estuarine, Coastal and Shelf Science 117: 178–187.CrossRefGoogle Scholar
  46. Voss, M., I. Liskow, M. Pastuszak, D. Ruess, U. Schulte, and J.W. Dippner. 2005. Riverine discharge into the coastal bay: a stable isotope study in the Gulf of Gdańsk, Baltic Sea. Journal of Marine Systems 57(1–2): 127–145.CrossRefGoogle Scholar
  47. Voss, M., B. Deutsch, R. Elmgren, A.-S. Heiskanen, P. Kuuppo, I.M. Liskow, C. Rolff, and U. Schulte. 2006. Source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments. Biogeosciences 3: 663–676.CrossRefGoogle Scholar
  48. Witek, Z. 1995. Biological production and its utilization within a marine ecosystem in the western Gdańsk Basin, 145. Gdynia: Sea Fisheries Institute.Google Scholar
  49. Witek, Z., S. Ochocki, M. Maciejowska, M. Pastuszak, J. Nakonieczny, B. Podgórska, J.M. Kownacka, T. Mackiewicz, and M. Wrzesińska-Kwiecień. 1997. Phytoplankton primary production and its utilisation by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic). Marine Ecology Progress Series 148: 169–186.CrossRefGoogle Scholar
  50. Witek, Z., C. Humborg, O. Savchuk, A. Grelowski, and E. Łysiak-Pastuszak. 2003. Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea). Estuarine, Coastal and Shelf Science 57: 239–248.CrossRefGoogle Scholar
  51. Zalewski, M. 2011. The Vistula River nitrogen and phosphorus discharges in the context of the primary production changes in the Gdansk Basin (1975–2010 period). PhD thesis, University of Gdansk, 144 pp. (in Polish).Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2015

Authors and Affiliations

  • M. T. Tomczak
    • 1
  • L. Szymanek
    • 2
  • M. Pastuszak
    • 2
  • W. Grygiel
    • 2
  • M. Zalewski
    • 2
  • S. Gromisz
    • 2
  • A. Ameryk
    • 2
  • J. Kownacka
    • 2
  • I. Psuty
    • 2
  • E. Kuzebski
    • 2
  • R. Grzebielec
    • 2
  • P. Margoński
    • 2
  1. 1.Baltic Sea CentreStockholm UniversityStockholmSweden
  2. 2.National Marine Fisheries Research InstituteGdyniaPoland

Personalised recommendations