Estuaries and Coasts

, Volume 39, Issue 3, pp 605–620 | Cite as

A Subtidal Model of Temperature for a Well-Mixed Narrow Estuary: the Guadalquivir River Estuary (SW Spain)

  • Enrique M. Padilla
  • Manuel Díez-Minguito
  • Miguel Ortega-Sánchez
  • Miguel A. Losada


This paper analyzes thermal energy transport in the narrow and tidally energetic Guadalquivir River Estuary (SW Spain). Measurements from a comprehensive monitoring campaign (2008–2011) reveal the forcing factors of the temperature field and its spatio-temporal variability. The along-channel thermal energy gradient reaches magnitudes of ∼375 J/m4 near the mouth during the summer and winter. The water temperature is primarily controlled by shortwave radiation, latent heat transfer through the free surface, and tidal advection, whereas it depends less on freshwater discharge and longitudinal dispersion. The tidally averaged effective longitudinal thermal dispersion coefficient was evaluated at several stretches for each tidal cycle. The mean values of the coefficient tend to increase landward and are on the order of ∼103, larger than (but of the same order of magnitude as) the salinity coefficient values. Based on these analyses, a deterministic operational model for thermal energy transport was developed. The model solves the tidally and cross-sectionally averaged advection–dispersion equation for the thermal energy balance and obtains accurate fits of the subtidal temperature field at any location within the estuary. The modeled water temperatures agreed well with the observations at all the stations (coefficients of determination, R 2 greater than 0.98), even after the seasonal oscillation in radiation was removed (R 2 > 0.77).


Guadalquivir estuary Water temperature Heat exchange Effective dispersion coefficient Deterministic operational model 



This research was funded by the former Spanish Ministry of Science and Innovation (Project CTM2009-10520/MAR), the Department of Innovation, Science and Business of the Andalusian Regional Government (Projects P09-TEP-4630 and P09-RNM-4735), a cooperative agreement between the Spanish National Research Council (CSIC-ICMAN) and the Universities of Granada and Cordoba, and Microproyecto num.61 CEI-Biotic Granada. The authors are indebted to the editor and the three anonymous reviewers for their great help in improving this manuscript. The authors are also grateful to Javier Herrero for the useful discussions and to Jennifer Osorio for her participation in the early phase of this work.


  1. Austin, J.A. 2004. Estimating effective longitudinal dispersion in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 60(3): 359–368.CrossRefGoogle Scholar
  2. Ávila, A. (2007). Procesos de múltiple escala en la evolución de la línea de costa. Universidad de Granada, Spain: ISBN: 978-84-692-1476-3. 161pp. PhD. Thesis. In Spanish.Google Scholar
  3. Cai, W.J. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science 3: 123–145.CrossRefGoogle Scholar
  4. Chant, R.J., and R.E. Wilson. 1997. Secondary circulation in a highly stratified estuary. Journal of Geophysical Research 102(C10): 23207–23215.CrossRefGoogle Scholar
  5. Chawla, A., D.A. Jay, A.M. Baptista, M. Wilkin, and C. Seaton. 2008. Seasonal variability and estuary-shelf interactions in circulation dynamics of a river-dominated estuary. Estuaries and Coasts 31(2): 269–288.CrossRefGoogle Scholar
  6. Díez-Minguito, M., A. Baquerizo, M. Ortega-Sánchez, G. Navarro, and M. A. Losada. (2012). Tide transformation in the Guadalquivir estuary (SW Spain) and process-based zonation, Journal of Geophysical Research: Oceans (1978-2012), 117(C3).Google Scholar
  7. Díez-Minguito, M., E. Contreras, M.J. Polo, and M.A. Losada. 2013. Spatio-temporal distribution, along-channel transport, and post-riverflood recovery of salinity in the Guadalquivir estuary (SW Spain). Journal of Geophysical Reasearch: Oceans 118(5): 2267–2278.Google Scholar
  8. Díez-Minguito, M., A. Baquerizo, H.E. de Swart, and M.A. Losada. 2014. Structure of the turbidity field in the Guadalquivir estuary: analysis of observations and a box model approach. Journal of Geophysical Research: Oceans 119(10): 7190–7204.Google Scholar
  9. Dyer, K.R. 1997. Estuaries: a physical introduction, 2nd ed. Chichester: Wiley.Google Scholar
  10. Elliot, M., and D.S. McLusky. 2002. The need for definitions in understanding estuaries. Estuarine and Coastal Shelf Science 55: 815–827.CrossRefGoogle Scholar
  11. Fernández-Delgado, C., F. Baldó, C. Vilas, D. García-González, J.A. Cuesta, E. González-Ortegón, and P. Drake. 2007. Effects of the river discharge management on the nursery function of the Guadalquivir river estuary (SW Spain). Hydrobiologia 587(1): 125–136.CrossRefGoogle Scholar
  12. Fischer, H.B. 1976. Mixing and dispersion in estuaries. Annual Review of Fluid Mechanics 8(1): 107–133.CrossRefGoogle Scholar
  13. Flecha, S., I.E. Huertas, G. Navarro, E.P. Morris, and J. Ruiz. 2014. Air–water CO2 fluxes in a highly heterotrophic estuary. Estuaries and Coasts 1–15.Google Scholar
  14. Fung, I.Y., D.E. Harrison, and A.A. Lacis. 1984. On the variability of the net longwave radiation at the ocean surface. Reviews of Geophysics 22(2): 177–193.CrossRefGoogle Scholar
  15. García-Lafuente, J., and J. Ruiz. 2007. The Gulf of Cádiz pelagic ecosystem: a review. Progress in Oceanography 74(2-3): 228–251.CrossRefGoogle Scholar
  16. García-Lafuente, J., J. Delgado, F. Criado-Aldeanueva, M. Bruno, J. del Río, and J.M. Vargas. 2006. Water mass circulation on the continental shelf of the Gulf of Cádiz. Deep Sea Research Part II: Topical Studies in Oceanography 53(11): 1182–1197.CrossRefGoogle Scholar
  17. García-Lafuente, J., J. Delgado, G. Navarro, C. Calero, M. Díez-Minguito, J. Ruiz, and J.C. Sánchez-Garrido. 2012. About the tidal oscillations of temperature in a tidally driven estuary: the case of Guadalquivir estuary, southwest Spain. Estuarine, Coastal and Shelf Science 111: 60–66.CrossRefGoogle Scholar
  18. Gay, P.S., and J. O’Donnell. 2007. A simple advection-dispersion model for the salt distribution in linearly tapered estuaries. Journal of Geophysical research: Oceans (1978-2012) 112(C7): C07021. doi: 10.1029/2006JC003840.CrossRefGoogle Scholar
  19. Geyer, W. R., R. Chant and R. Houghton. (2008). Tidal and spring-neap variations in horizontal dispersion in a partially mixed estuary. Journal of Geophysical Research: Oceans (1978-2012) 113: 1-16: C07023.Google Scholar
  20. Guo, L., M. van der Wegen, D.A. Jay, P. Matte, Z.B. Wang, D. Roelvink, and Q. He. 2015. River-tide dynamics: exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary. Journal of Geophysical Research: Oceans 120(5): 3499–3521.Google Scholar
  21. Hansen, D.V., and M. Rattray. 1965. Gravitational circulation in straits and estuaries. Journal of Marine Research 23(2): 104–122.Google Scholar
  22. Hickey, B.M., R.M. Kudela, J.D. Nash, K.W. Bruland, W.T. Peterson, P. MacCready, E.J. Lessard, D.A. Jay, N.S. Banas, A.M. Baptista, E.P. Dever, P.M. Kosro, L.K. Kilcher, A.R. Horner-Devine, E.D. Zaron, R.M. McCabe, J.O. Peterson, P.M. Orton, J. Pan, and M.C. Lohan. 2010. River influences on shelf ecosystems: introduction and synthesis. Journal of Geophysical Research: Oceans 115(C2): 1978–2012.Google Scholar
  23. Hoogendoorn, R.M., and G.J. Weltje. 2007. A stochastic model for simulating long time series of river-mouth discharge and sediment load. Flood Risk Management in Europe, Advances in Natural and Technological Hazards Research, Springer 25: 311–331.CrossRefGoogle Scholar
  24. Jay, D.A., R.J. Uncles, J. Largier, W.R. Geyer, J. Vallino, and W.R. Boynton. 1997. A review of recent developments in estuarine scalar flux estimation. Estuaries 20(2): 262–280.CrossRefGoogle Scholar
  25. Jorgensen, S.E., and G. Bendoricchio. 2001. Fundamentals of ecological modelling, 399. Radarweg: Elsevier Publishing.Google Scholar
  26. Kim, T.W., Y.K. Cho, and E.P. Dever. 2007. An evaluation of the thermal properties and albedo of macrotidal flat. Journal of Geophysical Research: Oceans (1978-2012) 112: C12009.CrossRefGoogle Scholar
  27. Kineke, G., R. Sternberg, J. Trowbridge, and W. Geyer. 1996. Fluid-mud processes on the Amazon continental shelf. Continental shelf research 16(5): 667–696.CrossRefGoogle Scholar
  28. King, B., and E. Wolanski. 1996. Bottom friction reduction in turbid estuaries. Coastal and Estuarine Studies 50: 325–337.CrossRefGoogle Scholar
  29. Lacy J. R., M. T. Stacey, J. R. Burau and S. G. Monismith. (2003). Interaction of lateral baroclinic forcing and turbulence in an estuary. Journal of Geophysical Research: Oceans (1978–2012) 108(C3). doi: 10.1029/2002JC001392
  30. Lemos, R.T., B. Sansó, and M. Los Huertos. 2007. Spatially varying temperature trends in a Central California estuary. Journal of Agricultural, Biological and Environmental Statistics 12(3): 379–396.CrossRefGoogle Scholar
  31. Monismith, S. G. (2010). Mixing in estuaries. In Contemporary issues in estuarine physics. Edited by A. Valle-Levinson. Cambridge University Press.Google Scholar
  32. Monismith, S.G., W. Kimmerer, J.R. Burau, and M.T. Stacey. 2002. Structure and flow-induced variability of the subtidal salinity field in northern. San Francisco Bay, Journal of Physical Oceanography 32: 3003–3019.CrossRefGoogle Scholar
  33. Monismith, S.G., J.L. Hench, D.A. Fong, N.J. Nidzieko, W.E. Fleenor, L.P. Doyle, and S.G. Schladow. 2009. Thermal variability in a Tidal River. Estuaries and Coasts 32(1): 100–110.CrossRefGoogle Scholar
  34. Navarro, G., F.J. Gutiérrez, M. Díez-Minguito, M.A. Losada, and J. Ruiz. 2011. Temporal and spatial variability in the Guadalquivir estuary: a challenge for real-time telemetry. Ocean Dynamics 61(6): 753–765.CrossRefGoogle Scholar
  35. Navarro, G., I.E. Huertas, E. Costas, S. Flecha, M. Díez-Minguito, I. Caballero, V. López-Rodas, L. Prieto, and J. Ruiz. 2012. Use of a Real-Time Remote Monitoring Network (RTRM) to characterize the Guadalquivir estuary (Spain). Sensors 12(2): 1398–1421.CrossRefGoogle Scholar
  36. Nidzieko, N.J., J.L. Hench, and S.G. Monismith. 2009. lateral circulation in well-mixed and stratified estuarine flows with curvature. Journal of Physical Oceanography 39(4): 831–851.CrossRefGoogle Scholar
  37. O’Donnell, J. 1993. Surface fronts in estuaries: a review. Estuaries and Coasts 16(1): 12–39.CrossRefGoogle Scholar
  38. Pawlowicz, R., B. Beardlsey, S. Lentz, D. Dever, and A. Anis. 2001. Software simplifes air-sea data estimates. EOS Transactions of the American Geophysics Union 82(1): 2–2. doi: 10.1029/01EO00004.CrossRefGoogle Scholar
  39. Prandle, D., and A. Lane. 1995. The annual temperature cycle in shelf seas. Continental Shelf Research 15(6): 681–704.CrossRefGoogle Scholar
  40. Prieto, L., G. Navarro, S. Rodríguez-Gálvez, I.E. Huertas, J.M. Naranjo, and J. Ruiz. 2009. Oceanographic and meteorological forcing of the pelagic ecosystem on the Gulf of Cádiz shelf (SW Iberian Peninsula). Continental Shelf Research 29(17): 2122–2137.CrossRefGoogle Scholar
  41. Reyes-Merlo, M.A., M. Díez-Minguito, M. Ortega-Sánchez, A. Baquerizo, and M.A. Losada. 2013. On the relative influence of climate forcing agents on the saline intrusion in a well-mixed estuary: medium-term Monte Carlo predictions. Journal of Coastal Research 65: 1200–1205.CrossRefGoogle Scholar
  42. Ruiz, J., E. García-Isarch, I. Emma Huertas, L. Prieto, A. Juárez, J.L. Muñoz, A. Sánchez-Lamadrid, S. Rodríguez-Gálvez, J.M. Naranjo, and F. Baldó. 2006. Meteorological and oceanographic factors influencing Engraulis encrasicolus early life stages and catches in the Gulf of Cádiz. Deep Sea Research, Part II: Topical Studies in Oceanography 53(11-13): 1363–1376.CrossRefGoogle Scholar
  43. Ruiz, J., D. Macías, M.A. Losada, M. Díez-Minguito, and L. Prieto. 2013. A simple biogeochemical model for estuaries with high sediment loads: application to the Guadalquivir river estuary (SW Iberia). Ecological Modelling 265: 194–206.CrossRefGoogle Scholar
  44. Ruiz, J., M.J. Polo, M. Díez-Minguito, G. Navarro, E.P. Morris, E.Huertas, I.Caballero, E.Contreras, M.Á. Losada. 2015. The Guadalquivir estuary: a hot spot for environmental and human conflicts. Environmental Management and Governance. Springer International Publishing, 199-232.Google Scholar
  45. Scully, M. E., W. R. Geyer and J. A. Lerczak. (2009). The influence of lateral advection on the residual estuarine circulation: a numerical modeling study of the Hudson River estuary. Journal of Physical Oceanography 39(1). doi:  10.1175/2008JPO3952.1.
  46. Uncles, R.J., and J.A. Stephens. 2001. The annual cycle of temperature in temperate estuary and associated heat fluxes to the coastal zone. Journal of Sea Research 46: 143–159.CrossRefGoogle Scholar
  47. Valle-Levinson, A., K. Holderied, C. Li, and R.J. Chant. 2007. Subtidal flow structure at the turning region of a wide outflow plume. Journal of Geophysical Research: Oceans (1978-2012) 112(C4): 1–18.CrossRefGoogle Scholar
  48. Wagner, R.W., M. Stacey, L.R. Brown, and M. Dettinger. 2011. Statistical models of temperature in the Sacramento-San Joaquin Delta under climate-change scenarios and ecological implications. Estuaries and Coasts 34(3): 544–556. doi: 10.1007/s122370109369z.CrossRefGoogle Scholar
  49. Wang, Z.B., J.C. Winterwerp, and Q. He. 2014. Interaction between suspended sediment and tidal amplification in the Guadalquivir Estuary. Ocean Dynamics 64(10): 1487–1498.CrossRefGoogle Scholar
  50. Warner, J.C., W.R. Geyer, and J.A. Lerczak. 2005. Numerical modeling of an estuary: a comprehensive skill assessment. Journal of Geophysical Research: Oceans (1978-2012) 110(C5): 1–13.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2015

Authors and Affiliations

  • Enrique M. Padilla
    • 1
    • 2
  • Manuel Díez-Minguito
    • 1
  • Miguel Ortega-Sánchez
    • 1
  • Miguel A. Losada
    • 1
  1. 1.Andalusian Institute for Earth System ResearchUniversity of GranadaGranadaSpain
  2. 2.Department of Civil and Environmental EngineeringImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations