Estuaries and Coasts

, Volume 38, Issue 5, pp 1782–1796 | Cite as

Human Pressure on Sandy Beaches: Implications for Trophic Functioning

  • Mª José Reyes-Martínez
  • Diego Lercari
  • Mª Carmen Ruíz-Delgado
  • Juan Emilio Sánchez-Moyano
  • Antonia Jiménez-Rodríguez
  • Alejandro Pérez-Hurtado
  • Francisco José García-García


The effect of coastal development and tourism occupancy on the structure and trophic networks of sandy beaches was analysed for the first time, using mass-balanced trophic models. Ecopath models were applied to two beaches, representative of different anthropogenic pressures, a beach located inside a protected area and an urbanised beach with tourism infrastructure and high levels of visitors. Models comprised 28 compartment at the protected beach and 27 compartments at the urbanised beaches, including detritus, phytoplankton, zooplankton, invertebrates, fishes and birds. Results revealed that the protected area had higher values of total system throughput, biomass, ascendency and capacity, reflecting a more complex, organised, mature and active system, compared to the urbanised beach. Finally, different indicators of stress were analysed and we suggest the Finn cycling index as an indicator of anthropogenic impact on sandy beaches.


Ecopath Food web Sandy beaches Human disturbance Spain 



We would like to thank the Natural Park “Los Toruños” (Cádiz) and its staff for the facilities provided during sampling. We specially thank Dr. José Manuel Guerra García, Departamento de Zoología, Universidad de Sevilla (Spain) for assistance with gut content analysis and Diego Caballero Sadi, Universidad de la República (Uruguay) for advice on birds biology. The authors are grateful with the anonymous reviewers for their helpful comments. This work was supported by the incentive programme to excellent research projects, financed by the government of Andalucía (P09-HUM-4717) through a PhD Grant awarded to the first author and by the programme for academic mobility between Andalusian and Latin American AUIP Universities.

Supplementary material

12237_2014_9910_MOESM1_ESM.xls (64 kb)
ESM 1 (XLS 63 kb)


  1. Allen, R.R. 1971. Relation between production and biomass. Journal of the Fisheries Research Board of Canada 28: 1573–1581.CrossRefGoogle Scholar
  2. Angelini, R., R. Morais, C. Catella, E. Resende, and S. Libralato. 2013. Aquatic food webs of the oxbow lakes in the Pantanal: a new site for fisheries guaranteed by alternated control? Ecological Modelling 253: 82–96.CrossRefGoogle Scholar
  3. Arcas, J. 2004. Dieta y selección de presas del andarríos chico Actitis Hypoleucos durante el invierno. Ardeola 51: 203–213.Google Scholar
  4. Arias, A. 1980. Crecimiento, régimen alimentario y reproducción de la dorada (Sparus aurata L.) y del robalo (Dicentrarchus labrax L.) en los esteros de Cádiz. Investigacion Pesquera 44: 59–83.Google Scholar
  5. Arias, A.M, and Drake, P. 1999. Fauna acúatica de las salinas del Parque Natural de la Bahía de Cádiz. Empresa de Gestión Medioambiental. Junta de Andalucía. D.L.España.Google Scholar
  6. Arreguín-Sánchez, F., E. Valero, and E. A. Chávez. 1993. A trophic box model of the coastal fish communities of the Southwestern Gulf of Mexico. In: Christensen, V. & D. Pauly. Trophic models of Aquatic Ecosystems. ICLARM Conference Proceedings 26. Philippines, pp. 197–205.Google Scholar
  7. Baeta, A., N. Niquil, J. Marques, and J. Patrício. 2011. Modelling the effects of eutrophication, mitigation measures and an extreme flood event on estuarine benthic food webs. Ecological Modelling 222: 1209–1221.CrossRefGoogle Scholar
  8. Baird, D., and R.E. Ulanowicz. 1989. The seasonal dynamic of the Chesapeake Bay ecosystem. Ecological Monographs 59: 329–364.CrossRefGoogle Scholar
  9. Baird, D., and R.E. Ulanowicz. 1993. Comparative study on the trophic structure, cycling and ecosystem properties of four tidal estuaries. Marine Ecology Progress Series 99: 221–237.CrossRefGoogle Scholar
  10. Bello, C.L., and M.I. Cabrera. 1999. Uso de la técnicamicrohistológica de Cavender y Hansen en la identificación de insectos acuáticos. Boletín Entomológico Venezolano 14: 77–79.Google Scholar
  11. Benavente, J., L. Del Río, G. Anfuso, F.J. Gracia, and L. Reyes. 2002. Utility of morphodynamic characterisation in the prediction of beach damage by storms. Journal of Coastal Research 36: 56–64.Google Scholar
  12. Bergamino, L., D. Lercari, and O. Defeo. 2011. Food web structure of sandy beaches: temporal and spatial variation using stable isotope analysis. Estuarine, Coastal and Shelf Science 91: 536–543.CrossRefGoogle Scholar
  13. Blamey, L., E. Plagányi, and G. Branch. 2014. Was overfishing of predatory fish responsible for a lobster-induced regime shift in the Benguela? Ecological Modelling 273: 140–150.CrossRefGoogle Scholar
  14. Boos, K., L. Gutow, R. Mundry, and H.D. Franke. 2010. Sediment preference and burrowing behaviour in the sympatric brittlestars Ophiura albida Forbes, 1839 and Ophiura ophiura (Linnaeus, 1758) (Ophiuroidea, Echinodermata). Journal of Experimental Marine Biology and Ecology 393: 176–181.CrossRefGoogle Scholar
  15. Brearey, D.M. 1982. The feeding ecology and foraging behaviour of sanderline Calidris alba and turnstone Arenaria interpres at Teesmouth N.E.England, Durham theses, Dirham University.Google Scholar
  16. Brey, T. 2001. Population Dynamics in Benthic Invertebrates. A virtual Handbook.
  17. Buitrago, N.R., and G. Anfuso. 2011. Morphological changes at Levante Beach (Cádiz, SW Spain) associated with storm events during the 2009–2010 winter seasons. Journal of Coastal Research 64: 1886–1890.Google Scholar
  18. Byron, C., J. Link, B. Costa-Pierce, and D. Bengston. 2011. Modeling ecological carrying capacity of shellfish aquaculture in highly flushed temperate lagoons. Aquaculture 314: 87–99.CrossRefGoogle Scholar
  19. Cammen, L.M. 1980. Ingestion rate: an empirical model for aquatic deposit feeders and detritivores. Oecologia 44: 303–310.CrossRefGoogle Scholar
  20. Chartosia, N., M.S. Kitsos, and A. Koukouras. 2010. Seasonal diet of portumnus latipes (pennat, 1777) (decopoda, portunidae). Crustaceana 83: 1101–1113.CrossRefGoogle Scholar
  21. Christensen, V., and D. Pauly. 1992. ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61: 169–185.CrossRefGoogle Scholar
  22. Christensen, V., and D. Pauly. 1995. Fish production, catches and the carrying capacity of the world oceans. Naga 18: 34–40.Google Scholar
  23. Christensen, V., and C.J. Walters. 2004. ECOPATH with ECOSIM: methods, capabilities and limitations. Ecological Modelling 172: 109–139.CrossRefGoogle Scholar
  24. Christensen, V., C.J. Walters, and D. Pauly. 2005. Ecopath with Ecosim: a user’s guide, November 2005 edition. Vancouver: Fisheries Centre, University of British Columbia.Google Scholar
  25. Christensen, V., C.J. Walters, D. Pauly, and R. Forest. 2008. Ecopath with Ecosim & user guide, November 2008 edition. Vancouver: Fisheries Centre, Universitty of British Columbia. 235.Google Scholar
  26. Coll, M., I. Palomera, S. Tudela, and F. Sardà. 2006. Trophic flows, ecosystem structure and fishing impacts in the South Catalan Sea, Northwestern Mediterranean. Journal of Marine Systems 59: 63–96.CrossRefGoogle Scholar
  27. Colléter, M., D. Gascuel, J.M. Eucotin, and L. Morais. 2012. Modelling trophic flows in ecosystems to assess the efficiency of marine protected area (MPA), a case study on the coast of Sénégal. Ecological Modeling 232: 1–13.CrossRefGoogle Scholar
  28. Colombini, I., M. Brilli, M. Fallaci, E. Gagnarli, and L. Chelazzi. 2011. Food webs of sandy beach macroinvertebrate community using stable isotopes analysis. Acta Oecologica 37: 422–432.CrossRefGoogle Scholar
  29. d’ Acoz, C.U. 2004. The genus Bathyporeia Lindström, 1855, in western Europe (Crustacea: Amphipoda: Pontoporeiidae). 2004. Zoologischer Verhandelingen 28: 3–162.Google Scholar
  30. Dauer, D.M., C.A. Maybury, and R.M. Ewing. 1981. Feeding behaviour and general ecology of several spionid polychaetes from the Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 54: 21–38.CrossRefGoogle Scholar
  31. Defeo, O., and A. McLachlan. 2005. Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Marine Ecology Progress Series 295: 1–20.CrossRefGoogle Scholar
  32. Defeo, O., A. McLachlan, D. Schoeman, T. Schlacher, J. Dugan, A. Jones, M. Lastra, and F. Scapini. 2009. Threats to sandy beach ecosystems: a review. Estuarine, Coastal and Shelf Science 81: 1–12.CrossRefGoogle Scholar
  33. Dennel, R. 1933. The habitats and feeding mechanism of the Amphipod Haustorius arenarius Slabber. Journal of the Linnean Society of London, Zoology 38: 363–388.CrossRefGoogle Scholar
  34. Dugan, J. 1999. Utilization of sandy beaches by shorebirds: relationships to population characteristics of macrofauna prey species and beach morphodynamics. Draft final technical report, outer continental shelf study. Caramillo: Minerals Management Service.Google Scholar
  35. Dugan, J.E., D.M. Hubbard, M. McCrary, and M. Pierson. 2003. The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed beaches of southern California. Estuarine, Coastal and Shelf Science 58S: 133–148.Google Scholar
  36. Fabiano, M., V. Marin, C. Paoli, and P. Vassallo. 2009. Methods for the sustainability evaluation of coastal zone. Journal of Mediterranean Ecology 10: 5–11.Google Scholar
  37. Fanini, L., C.M. Cantarino, and F. Scapini. 2005. Relationships between the dynamics of two Talitrus saltator populations and the impacts of activities linked to tourism. Oceanologia 47: 93–112.Google Scholar
  38. Fauchal, K. 1979. The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology: An Annual Review 7: 193–284.Google Scholar
  39. Field, J.G., F. Wulff, and K.H. Mann. 1989. The need to analyse ecological networks. In Network analysis in marine ecology: methods and applications. Coastal and estuarine studies, ed. F. Wulff, J.G. Field, and K.H. Mann, 3–12. Berlin: Springer.Google Scholar
  40. Freire, J. 1996. Feeding ecology of Liocarcinus depurator (Decapoda: Portunidae) in the Riade Arousa (Galicia, north-west Spain): effects of habitat, season and life history. Marine Biology 126: 297–311.CrossRefGoogle Scholar
  41. Froese, R., and D. Pauly. 2012. FishBase. World Wide Web Electronic
  42. Gaedke, U. 1995. A comparison of whole-community and ecosystem approaches (biomass size distributions, food web analysis, network analysis, simulation models) to study the structure, function and regulation of pelagic food webs. Journal of Plankton Research 17(6): 1273–1305.CrossRefGoogle Scholar
  43. Guerra-García, J.M., J.M. Tierno de Figueroa, C. Navarro-Barranco, M. Ros, J.E. Sánchez-Moyano, and J. Moreira. 2014. Dietary analysis of the marine Amphipods (Crustacea: Peracarida) form the Iberian Peninsula. Journal of Sea Research 85: 508–517.CrossRefGoogle Scholar
  44. Halpern, B.J., and R.R. Warner. 2003. Matching marine reserve design to reserve objectives. Proceedings of the Royal Society of London B 270: 1871–1878.CrossRefGoogle Scholar
  45. Heppleston, P.B. 1971. The feeding ecology of oystercatchers (Haematopus ostralegus L.) in winter in northern Scotland. Journal of Animal Ecology 40: 651–672.CrossRefGoogle Scholar
  46. Heymans, J.J., and A. McLachlan. 1996. Carbon budget and network analysis of a high-energy beach/surf zone ecosystem. Estuarine, Coastal and Shelf Science 43: 484–585.CrossRefGoogle Scholar
  47. Heymans, J.J., R.E. Ulanowicz, and C. Bondavalli. 2002. Network analysis of the South Florida Everglades graminoid marshes and comparison with nearby cypress ecosystems. Ecological Modelling 149: 5–23.CrossRefGoogle Scholar
  48. Holdich, D.M. 1981. Opportunistic feeding behaviour in a predatory isopod. Crustaceana 41: 101–103.CrossRefGoogle Scholar
  49. Hsing-Juh, L., D. Xiao-Xun, S. Kwang-Tsao, S. Huei-Meei, L. Wen-Tseng, H. Hwey-Lian, F. Lee-Shing, and H. Jia-Jang. 2006. Trophic structure and functioning in a eutrophic and poorly flushed lagoon in southwestern Taiwan. Marine Environmental Research 62: 61–82.CrossRefGoogle Scholar
  50. Jones, D.A., and C.J. Pierpoint. 1997. Ecology and taxonomy of the genus Eurudice (Ispoda: Cirolanidae) form sand beaches on the Iberian Peninsula. Journal of the Marine Biological Association of the United Kingdom 77: 55–76.CrossRefGoogle Scholar
  51. Kay, J.J., L.A. Graham, and R.E. Ulanowicz. 1989. A detailed guide to network analysis. In: Wulff, F., Field, J.G., Mann, K.H. (Eds.), Network Analysis in Marine Ecology: Methods and Applications, Springer, Berlin 32: 15–61.Google Scholar
  52. Knox, G.A. 2001. The ecology of seashores. Florida: CRC Press, Boca Raton.Google Scholar
  53. Leguerrier, D., D. Degré, and N. Niquil. 2007. Network analysis and inter-ecosystem comparison of two intertidal mudflat food webs (Brouage Mudflat and Aiguillon Cove, SW France). Estuarine, Coastal and Shelf Science 74: 403–418.CrossRefGoogle Scholar
  54. Lercari, D., and O. Defeo. 2003. Variation of a sandy beach macrobenthic community along a human-induced environmental gradient. Estuarine, Coastal and Shelf Science 58S: 17–24.CrossRefGoogle Scholar
  55. Lercari, D., L. Bergamino, and O. Defeo. 2010. Trophic models in sandy beaches with contrasting morphodynamics: comparing ecosystem structure and biomass flow. Ecological Modelling 221: 2751–2759.CrossRefGoogle Scholar
  56. Lewis, L., P. Bodegom, J. Rozema, and G. Janssen. 2012. Does beach nourishment have long-term effects on intertidal macroinvertebrate species abundance? Estuarine, Coastal and Shelf Science 113: 172–181.CrossRefGoogle Scholar
  57. Libralato, S., M. Coll, M. Tempesta, A. Santojanni, M. Spoto, I. Palomera, E. Arneri, and C. Solidoro. 2010. Food-web traits of protected and exploited areas of the Adriatic Sea. Biological Conservation 143: 2182–2194.CrossRefGoogle Scholar
  58. Lindeman, R.L. 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.CrossRefGoogle Scholar
  59. Marcström, V., and J.W. Mascher. 1979. Weights and fat in Lapwings Vanellus vanellus and Oystercatchers Haematopus ostralegus starved to death during a cold spell in spring. Ornis Scandinavica 10: 235–240.CrossRefGoogle Scholar
  60. Mcdermott, J.J., and P. Roe. 1985. Food, feeding behaviour and feeding ecology of nemerteans. American Zoologist 25: 113–125.Google Scholar
  61. McLachlan, A., and A.C. Brown. 2006. The ecology of sandy shores. Burlington: Academic.Google Scholar
  62. McLachlan, A., O. Defeo, E. Jaramillo, and A.D. Short. 2013. Sandy beach conservation and recreation: guidelines for optimising management strategies for multi-purpose use. Ocean and Coastal Management 71: 256–368.CrossRefGoogle Scholar
  63. Moreira, F. 1995. The winter feeding ecology of Avocet Recurvirostra avosetta on intertidal areas. II. Diet and feeding mechanisms. Ibis 137: 99–108.CrossRefGoogle Scholar
  64. Navarro-Barranco, C., J.M. Tierno-de-Figueroa, J.M. Guerra-García, L. Sánchez-Tocino, and J.C. García-Gómez. 2013. Feeding habits of amphipods (Crustacea: Malacostraca) from shallow soft bottom communities: comparison between marine caves and open habitats. Journal of Sea Research 78: 1–7.CrossRefGoogle Scholar
  65. Nilsson, S.G., and I.N. Nilsson. 1976. Numbers, food consumption, and fish predation by birds in Lake Móckeln, southern Sweden. Ornis Scandinavica 7: 61–70.CrossRefGoogle Scholar
  66. Odum, H.T. 1969. The strategy of ecosystem development. Science 164: 262–270.CrossRefGoogle Scholar
  67. Odum, E. 1971. Fundamentals of ecology. Philadelphia: Saunders.Google Scholar
  68. Ortiz, M., and M. Wolff. 2002. Trophic model of four benthic communities in Tongoy Bay (Chile): comparative analysis and preliminary assessment of management strategies. Journal of Experimental Marine Biology and Ecology 268: 205–235.CrossRefGoogle Scholar
  69. Parsons, T., Y. Maila, and C. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon.Google Scholar
  70. Patrício, J., and J.C. Marques. 2006. Mass balanced models of the food web in three areas along a gradient of eutrophication symptoms in the south arm of the Mondego estuary (Portugal). Ecological Modelling 197: 21–34.CrossRefGoogle Scholar
  71. Patrício, J., R. Ulanowicz, M.A. Pardal, and J.C. Marques. 2004. Ascendency as an ecological indicator: a case study of estuarine pulse eutrophication. Estuarine, Coastal and Shelf Science 60: 23–35.CrossRefGoogle Scholar
  72. Pérez-Hurtado, A., J.D. Goss-Custard, and F. García. 1997. The diet of wintering waders in Cádiz Bay, southwest Spain. Bird Study 44: 45–52.CrossRefGoogle Scholar
  73. Phong, L.T., A.A. Dam, H.M.J. Udo, M.E.F. Mensvoort, L.Q. Tri, F.A. Steenstra, and A.J. Zijpp. 2010. An agro-ecological evaluation of aquaculture integration into farming systems of the Mekong Delta. Agriculture, Ecosystems and Environment 138: 232–241.CrossRefGoogle Scholar
  74. Poppe, G.T., and Y. Goto. 1993. European seashells, Vol. II. (Scaphopoda, Bivalvia, Cephalopoda). Wiesbaden: Verlag Christa Hemmen.Google Scholar
  75. Rosado-Solórzano, R., and S. Guzman del Proo. 1998. Preliminary trophic structure model for Tampamachoco lagoon, Veracruz, Mexico. Ecological Modelling 109: 141–154.CrossRefGoogle Scholar
  76. San Vicente, C., and J.C. Sorbe. 1993. Biologie du mysidacé suprabenthique schistomysis parkeri Norman, 1892 dans la zone sud du golfe de gascogne (plage d’Hendaye). Crustaceana 65: 222–252.CrossRefGoogle Scholar
  77. Scapini, F. 2003. Beaches—what future? An integrated approach to the ecology of sandy beaches (editorial). Estuarine, Coastal and Shelf Science 58S: 1–3.CrossRefGoogle Scholar
  78. Schlacher, T.A., and R.M. Connolly. 2009. Land-ocean coupling of carbon and nitrogen fluxes on sandy beaches. Ecosystems 12: 311–321.CrossRefGoogle Scholar
  79. Schlacher, T.A., D. Richardson, and I. McLean. 2008. Impacts of off-road vehicles (ORVs) on macrobenthic assemblages on sandy beaches. Environmental Management 41: 878–892.CrossRefGoogle Scholar
  80. Selleslagh, J., J. Lobry, R. Amara, J.M. Brylinski, and P. Boët. 2013. Trophic functioning of coastal ecosystems along an anthropogenic pressure gradient: a French case study with emphasis on a small and low impacted estuary. Estuarine, Coastal and Shelf Science 112: 73–85.CrossRefGoogle Scholar
  81. Theilacker, G.H., and A.S. Kimball. 1984. Rotifers and copepods as larval fish foods. California Cooperative Oceanic Fisheries Investigations XXV: 80–84.Google Scholar
  82. Torrecilla-Roca, I., and J.M. Guerra-García. 2012. Feeding habits of the peracarid crustaceans associated to the alga Fucus spiralis in Tarifa Island, Cádiz (Southern Spain). Zoologia Baetica 23: 39–47.Google Scholar
  83. Torres, M., M. Coll, J. Heymans, V. Christensen, and I. Sobrino. 2013. Food-web structure of and fishing impacts on the Gulf of Cádiz ecosystem (South-western Spain). Ecological Modelling 265: 26–44.Google Scholar
  84. Turpie, J.K., and P.A.R. Hockey. 1997. Adaptative variation in the foraging behaviour of Grey Plover Pluvialis squatarola and Whimbrel Numenius pheopus. Ibis 139: 289–298.CrossRefGoogle Scholar
  85. Ugolini, A., G. Ungherese, S. Somigli, G. Galanti, D. Baroni, F. Borghini, N. Cipriani, M. Nebbiai, M. Passaponti, and S. Focardi. 2008. The amphipod Talitrus saltator as a bioindicator of human trampling on sandy beaches. Marine Environmental Research 65: 349–357.CrossRefGoogle Scholar
  86. Ulanowicz, R.E. 1984. Community measures of marine food networks and their possible applications. In Flows of energy and materials in marine ecosystems, ed. M.J.R. Fashman, 23–47. New York: Plenum Press.CrossRefGoogle Scholar
  87. Ulanowicz, R.E. 1986. Growth and development: ecosystem phenology. New York: Springer. 203.CrossRefGoogle Scholar
  88. Ulanowicz, R.E., and C.J. Puccia. 1990. Mixed trophic impact in ecosystems. Coenoses 5: 7–16.Google Scholar
  89. Vasallo, P., C. Paoili, and M. Fabiano. 2012. Ecosystem level analysis of sandy beaches using thermodynamic and network analyses: a study case in the NW Mediterranean Sea. Ecological Indicators 15: 10–17.CrossRefGoogle Scholar
  90. Vega-Cendejas, M.E., F. Arreguín-Sánchez, and M. Hernández. 1993. Trophic fluxes on the Campeche Bank, Mexico. In: Christensen, V. & D. Pauly. Trophic models of Aquatic Ecosystems. ICLARM Conference Proceedings 26. Philippines, pp. 206–213.Google Scholar
  91. Veloso, V.G., E.S. Silva, C.H.S. Caetano, and R. Cardoso. 2006. Comparison between the macroinfauna of urbanized and protected beaches in Rio de Janeiro State, Brazil. Biological Conservation 127: 510–515.CrossRefGoogle Scholar
  92. Veloso, V.G., G. Neves, M. Lozano, A. Perez-Hurtado, C.G. Gago, F. Hortas, and F. García-García. 2008. Responses of talitrid amphipods to a gradient of recreational pressure caused by beach urbanization. Marine Ecology 29(1): 126–133.CrossRefGoogle Scholar
  93. Villanueva, M.C., P. Lalèyè, J.J. Albaret, R. Laë, L. Tito de Morais, and J. Moreau. 2006. Comparative analysis of trophic structure and interactions of two tropical lagoons. Ecological Modelling 197: 461–477.CrossRefGoogle Scholar
  94. Vinebrooke, R.D., K.L. Cottingham, and J. Norberg. 2004. Implications of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104: 451–457.CrossRefGoogle Scholar
  95. Yang, Y., H. Chen, and Z. Yang. 2010. Assessing changes of trophic interactions during once anthropogenic water supplement in Baiyangdian Lake. Procedia Environmental Sciences 2: 1169–1179.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  • Mª José Reyes-Martínez
    • 1
  • Diego Lercari
    • 2
  • Mª Carmen Ruíz-Delgado
    • 1
  • Juan Emilio Sánchez-Moyano
    • 3
  • Antonia Jiménez-Rodríguez
    • 1
  • Alejandro Pérez-Hurtado
    • 4
  • Francisco José García-García
    • 1
  1. 1.Departamento de Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
  2. 2.UNDECIMAR, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Departamento de ZoologíaUniversidad de SevillaSevillaSpain
  4. 4.Departamento de Biología Animal y EcologíaUniversidad de CádizPuerto RealSpain

Personalised recommendations