Estuaries and Coasts

, Volume 38, Issue 5, pp 1448–1465 | Cite as

Fish Species Utilization of Contrasting sub-Habitats Distributed Along an Ocean-to-Land Environmental Gradient in a Tropical Mangrove and Seagrass Lagoon

  • A. Hylkema
  • W. Vogelaar
  • H. W. G. Meesters
  • I. Nagelkerken
  • A. O. Debrot


The importance of mangrove and seagrass lagoonal habitats as nursery areas for many reef-associated fish species is well established in the scientific literature. However, few studies have examined the relative use by nursery species of different sub-habitats within such systems. Here, we investigated fish community structure of a variety of interconnected sub-habitats of the tropical lagoon of Lac Bay in Bonaire, Dutch Caribbean. Visual census was used to test the degree to which these sub-habitats may differ in their use by fishes of different species and life stages. We quantitatively sampled the fish species abundance, composition, and size structures at a total of 162 sites distributed among nine different sub-habitats that are common to mangrove and seagrass ecosystems. Fish community variables differed consistently among sub-habitats and were mainly influenced by the presence of mangrove root structure or seagrass cover. Mangrove fringe sub-habitats were a premier habitat since multiple life stages of a variety of species showed highest densities and biomass there. Several reef fish species had a distribution pattern suggesting a unique stepwise post-settlement life cycle migration in which larger juveniles and/or subadults appear to move from the open bay environment (seagrass beds or bay mangrove fringe) to the interior mangrove fringes along mangrove pools before later departing to the adult habitat of the coral reef. In the case of the well-lit and well-circulated central bay sub-habitat, the limiting factor to fish abundance and diversity appeared to be the paucity of three-dimensional shelter due to the lack of Thalassia seagrass beds. In the warm and hypersaline backwaters, physiological tolerance limits were likely a key limiting factor. Long-term changes driven by mangrove expansion into this non-estuarine lagoon have been steadily reducing the net coverage of clear bay waters, while the surface of shallow, muddy, and hypersaline backwaters, unusable by key nursery reef fish species, has been increasing by an almost equal amount. Our study shows how fish density varies along the full gradient of sub-habitats found across a tropical bay to provide insight into the potential consequences for nursery habitat function when the availability and quality of these sub-habitats change in response to the long-term dynamic processes of mangrove land reclamation and climate change.


Caribbean Tropical Seagrass Mangrove Fish nursery Mangrove expansion 



This work was conducted on Bonaire under auspices of Stinapa Bonaire. Main funding was provided by the Netherlands Ministry of Economic Affairs under project number 4308701003 to IMARES, A. Debrot, principal investigator, as part of the Wageningen University BO research program (BO-11-011.05-007). Imares also provided supplemental funding through student internship grants to A. Hylkema and W. Vogelaar. I. Nagelkerken was supported by an Australian Research Council grant (FT120100183). We thank the STINAPA rangers and additional staff, and in particular Bonaire Marine Park Manager, Ramon de León, Sabine Engel and Gevy Soliana, for on-site assistance, cooperation and advice. We further thank Elly Albers of the Mangrove Information and Activity Center for borrowing her kayaks and Frank van Slobbe of DROB-Bonaire for arranging the necessary permits. Dr. R. Peachey generously allowed us to use the CIEE Bonaire laboratory facilities. We also thank Dr. Rudi Roijackers for his support as academic advisor to A. Hylkema and W. Vogelaar. This work benefited greatly from comments by Dr. C. McIvor and anonymous reviews of an earlier version of the manuscript. Elze Dijkman and Liesbeth van der Vlies are thanked for assisting with our figures.


  1. Aguirre-León, A., H.E. Pérez-Ponce, and S. Díaz-Ruiz. 2014. Heterogeneidad ambiental y su relación con la diversidad y abundancia de la comunidad de peces en un sistema costero del Golfo de México. Revista de Biología Tropical 62: 157–176.CrossRefGoogle Scholar
  2. Babu, D.S.S., S. Sivalingam, and T. Machado. 2012. Need for adaptation strategy against global sea level rise: An example from Saudi coast of Arabian gulf. Mitigation and Adaptation Strategies for Global Change 17: 821–836.CrossRefGoogle Scholar
  3. Beck, M.W., K.L. Heck, K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. Halpern, C.G. Hays, K. Hoshino, T.J. Minello, R.J. Orth, P.F. Sheridan, and M.P. Weinstein. 2001. The identification, conservation and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51: 633–641.CrossRefGoogle Scholar
  4. Bingham, B.L. 2001. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology 40: 81–251.CrossRefGoogle Scholar
  5. Blaber, S.J.M. 2007. Mangroves and fishes: Issues of diversity, dependence, and dogma. Bulletin of Marine Science 80: 457–472.Google Scholar
  6. Bohnsack, J.A., Harper, D.E., 1988. Length-weight relationships of selected marine reef fishes from the southeastern United States and the Caribbean. NOAA Technical Memorandum NMFS-SEFC-215, p. 31.Google Scholar
  7. Bouchon‐Navaro, Y., C. Bouchon, D. Kopp, and M. Louis. 2006. Weight–length relationships for 50 fish species collected in seagrass beds of the Lesser Antilles. Journal of Applied Ichthyology 22: 322–324.CrossRefGoogle Scholar
  8. Carrier, J.C., and H.L. Pratt. 1998. Habitat management and closure of a nurse shark breeding and nursery ground. Fisheries Research 39: 209–213.CrossRefGoogle Scholar
  9. Chittaro, P.M., B.J. Fryer, and P.F. Sale. 2004. Discrimination of French grunts (Haemulon flavolineatum, Desmarest, 1823) from mangrove and coral reef habitats using otolith microchemistry. Journal of Experimental Marine Biology and Ecology 308: 169–183.CrossRefGoogle Scholar
  10. Clarke, K.R., and R.M. Warwick. 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. Plymouth: PRIMER-E.Google Scholar
  11. Cocheret de la Morinière, E., I. Nagelkerken, H. van der Meij, and G. van der Velde. 2004. What attracts juvenile coral reef fish to mangroves: habitat complexity or shade? Marine Biology 144: 139–145.CrossRefGoogle Scholar
  12. Cocheret de la Morinière, E., B.J.A. Pollux, I. Nagelkerken, and G. van der Velde. 2002. Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuarine, Coastal and Shelf Science 55: 309–321.CrossRefGoogle Scholar
  13. Comeaux, R.S., M.A. Allison, and T.S. Bianchi. 2012. Mangrove expansion in the Gulf of Mexico with climate change: Implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science 96: 81–95.CrossRefGoogle Scholar
  14. Costanza, R., R. d'Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O'Neill, R. Paruelo, G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.CrossRefGoogle Scholar
  15. Dahlgren, C.P., and D.B. Eggleston. 2000. Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81: 2227–2240.CrossRefGoogle Scholar
  16. Dahlgren, C.P., G.T. Kellison, A.J. Adams, B.M. Gillanders, M.S. Kendall, C.A. Layman, J.A. Ley, I. Nagelkerken, and J.E. Serafy. 2006. Marine nurseries and effective juvenile habitats: Concepts and applications. Marine Ecology Progress Series 312: 291–295.CrossRefGoogle Scholar
  17. DeAngelis, B.M., C.T. McCandless, N.E. Kohler, C.W. Recksiek, and G.B. Skomal. 2008. First characterization of shark nursery habitat in the United States Virgin Islands: Evidence of habitat partitioning by two shark species. Marine Ecology Progress Series 358: 257–271.CrossRefGoogle Scholar
  18. de Buisonje, P.H. 1974. Neogene and Quaternary geology of Aruba, Curaçao and Bonaire (Netherlands Antilles). Natuurwetenschappelijke Studiekring voor Suriname en de Nederlandse Antillen 78: 1–293.Google Scholar
  19. de Freitas, J.A., B.S.J. Nijhof, A.C. Rojer, and A.O. Debrot. 2005. Landscape ecological vegetation map of the island of Bonaire (Southern Caribbean), 64. Amsterdam: Royal Netherlands Academy of Arts and Sciences.Google Scholar
  20. de Haan, D., and J.S. Zaneveld. 1959. Some notes on tides in Annabaai Harbour, Curaçao, Netherlands Antilles. Bulletin of Marine Science of the Gulf and Caribbean 9: 224–236.Google Scholar
  21. Debrot, A.O., Hylkema, A., Vogelaar, W., Meesters, H.W.G., Engel, M.S., R. de León, W.F. Prud’homme van Reine and I. Nagelkerken. 2012b. Baseline surveys of Lac bay benthic and fish communities, Bonaire. Report No. C129/12. IMARES-Wageningen University, Den Helder, the Netherlands. 52pp.Google Scholar
  22. Debrot, A.O., C. Wentink, and A. Wulfsen. 2012b. Baseline survey of anthropogenic pressures for the Lac Bay ecosystem, Bonaire. Report No. C092/12, 71. Den Helder, the Netherlands: IMARES-Wageningen University.Google Scholar
  23. Dorenbosch, M., M.C. van Riel, I. Nagelkerken, and G. van der Velde. 2004. The relationship of reef fish densities to the proximity of mangrove and seagrass nurseries. Estuarine, Coastal and Shelf Science 60: 37–48.CrossRefGoogle Scholar
  24. Dorenbosch, M., M.G.G. Grol, I. Nagelkerken, and G. van der Velde. 2005. Distribution of coral reef fishes along a coral reef–seagrass gradient: edge effects and habitat segregation. Marine Ecology Progress Series 299: 277–288.CrossRefGoogle Scholar
  25. Dorenbosch, M., M.G.G. Grol, I. Nagelkerken, and G. van der Velde. 2006. Different surrounding landscapes may result in different fish assemblages in East African seagrass beds. Hydrobiologia 563: 45–60.CrossRefGoogle Scholar
  26. Eggleston, D.B. 1995. Recruitment in Nassau grouper Epinephelus striatus: post-settlement abundance, microhabitat features, and ontogenetic habitat shifts. Marine Ecology Progress Series 124: 9–22.CrossRefGoogle Scholar
  27. Ellison, J.C., and D.R. Stoddart. 1991. Mangrove ecosystem collapse during predicted sea-level rise- Holocene analogs and implications. Journal of Coastal Research 7: 151–165.Google Scholar
  28. Erdmann, W., and A. Scheffers. 2006. Map of Lac Bay mangrove development 1961–1996. Bonaire: STINAPA.Google Scholar
  29. Ewel, K.C., R.R. Twilley, and J.E. Ong. 1998. Different kinds of mangrove forests provide different goods and services. Global Ecology and Biogeography 7: 83–94.CrossRefGoogle Scholar
  30. Faunce, C.H., and C.A. Layman. 2009. Sources of variation that affect perceived nursery function of mangroves. In Ecological connectivity among tropical coastal ecosystems, ed. I. Nagelkerken, 401–421. Dordrecht, the Netherlands: Springer Science and Business Media.CrossRefGoogle Scholar
  31. Faunce, C.H., and J.E. Serafy. 2007. Nearshore habitat use by gray snapper (Lutjanus griseus) and bluestriped grunt (Haemulon sciurus): environmental gradients and ontogenetic shifts. Bulletin of Marine Science 80: 473–495.Google Scholar
  32. Faunce, C.H., and J.E. Serafy. 2008. Selective use of mangrove shorelines by snappers, grunts, and great barracuda. Marine Ecology Progress Series 356: 153–162.CrossRefGoogle Scholar
  33. Frias-Torres, S. 2006. Habitat use of juvenile goliath grouper Epinephelus itajara in the Florida Keys, USA. Endangered Species Research 2: 1–6.CrossRefGoogle Scholar
  34. Gladstone, W. 2009. Conservation and management of tropical coastal ecosystems. In Ecological connectivity among tropical coastal ecosystems, ed. I. Nagelkerken, 565–605. Dordrecht, the Netherlands: Springer Science and Business Media.CrossRefGoogle Scholar
  35. Green, B.C., D.J. Smith, and G.J.C. Underwood. 2012. Habitat connectivity and spatial complexity differentially affect mangrove and salt marsh fish assemblages. Marine Ecology Progress Series 466: 177–192.CrossRefGoogle Scholar
  36. Grol, M.G.G., M. Dorenbosch, E.M.G. Kokkelmans, and I. Nagelkerken. 2008. Mangroves and seagrass beds do not enhance growth of early juveniles of a coral reef fish. Marine Ecology Progress Series 366: 137–146.CrossRefGoogle Scholar
  37. Grol, M.G.G., I. Nagelkerken, A.L. Rypel, and C.A. Layman. 2011. Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish. Oecologia 165: 79–88.CrossRefGoogle Scholar
  38. Heck, K.L., G. Hays, and R.J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253: 123–136.CrossRefGoogle Scholar
  39. Henderson, A.C., K. McClellan, and M. Calosso. 2010. Preliminary assessment of a possible lemon shark nursery in the Turks & Caicos Islands, British West Indies. Caribbean Journal of Science 46: 29–38.Google Scholar
  40. Humann, P., and N. DeLoach. 1994. Reef fish identification: Florida, Caribbean, Bahamas, 500. Jacksonville, Florida, USA: New World Publications.Google Scholar
  41. Igulu, M.M., I. Nagelkerken, G. van der Velde, and Y.D. Mgaya. 2013. Mangrove fish production is largely fuelled by external food sources: A stable isotope analysis of fishes at the individual, species, and community levels from across the globe. Ecosystems 16: 1336–1352.CrossRefGoogle Scholar
  42. IPCC (Intergovernmental Panel on Climate Change), 2007. In: Solomon, S.D., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
  43. IUCN. 2011. Coral Reef Resilience Assessment of the Bonaire National Marine Park, 51. Gland, Switzerland: Netherlands Antilles. IUCN.Google Scholar
  44. Kimirei, I.A., I. Nagelkerken, Y.D. Mgaya, and C.M. Huijbers. 2013a. The mangrove nursery paradigm revisited: Otolith stable isotopes support nursery-to-reef movements by Indo-Pacific fishes. PLoS ONE 8(6): e66320.CrossRefGoogle Scholar
  45. Kimirei, I.A., I. Nagelkerken, M. Trommelen, P. Blankers, N. van Hoytema, D. Hoeijmakers, C.M. Huijbers, Y.D. Mgaya, and A.L. Rypel. 2013b. What drives ontogenetic niche shifts of fishes in coral reef ecosystems? Ecosystems 16: 783–796.CrossRefGoogle Scholar
  46. Khatoon, Z., R. Paperno, and S.M. Hussain. 2014. Spatial and temporal changes in the fish communities from a mangrove-dominated creek system near Karachi, Pakistan. Journal of Applied Ichthyology 30: 350–358.CrossRefGoogle Scholar
  47. Klosowska, B.B., S.R. Troelstra, J.E. van Hinte, D. Beets, K. van der Borg, and A.F.M. de Jong. 2004. Late Holocene environmental reconstruction of St. Michiel saline lagoon Curaçao (Duth Antilles). Radiocarbon 46: 765–774.Google Scholar
  48. Koenig, C.C., F.C. Coleman, A.M. Eklund, J. Schull, and J. Ueland. 2007. Mangroves as essential nursery habitat for goliath grouper (Epinephelus itajara). Bulletin of Marine Science 80: 567–586.Google Scholar
  49. Kopp, D., Y. Bouchon-Navaro, M. Louis, D. Mouillot, and C. Bouchon. 2010. Juvenile Fish Assemblages in Caribbean seagrass beds: Does nearby habitat matter? Journal of Coastal Research 26: 1133–1141.CrossRefGoogle Scholar
  50. Laegdsgaard, P., and C. Johnson. 2001. Why do juvenile fish utilize mangrove habitats? Journal of Experimental Marine Biology and Ecology 257: 229–253.CrossRefGoogle Scholar
  51. Martinez-Andrade, F., 2003. A comparison of life histories and ecological aspects among snappers (Pisces: Lutjanidae). Ph.D. Dissertation. Faculty of the Louisiana State University and Agricultural and Mechanical College, Louisiana, USA, 201 pp.Google Scholar
  52. Mateo, I., and W.J. Tobias. 2001. The role of nearshore habitats as nursery grounds for juvenile fishes on the northeast coast of St. Croix, USVI. Proceedings of the Gulf and Caribbean Fisheries Institute 52: 512–530.Google Scholar
  53. Mumby, P.J., A.J. Edwards, J.E. Arias-González, K.C. Lindeman, P.G. Blackwell, A. Gall, M.I. Gorczynska, A.R. Harborne, C.L. Pescod, and H. Renken. 2004. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427: 533–536.CrossRefGoogle Scholar
  54. Munro, J.L. 1983. Caribbean coral reef fishery resources, 2nd ed, 276. Manila, Philippines: International Centre for Living Aquatic Resources Management.Google Scholar
  55. Nagelkerken, I. 2007. Are non-estuarine mangroves connected to coral reefs through fish migration? Bulletin of Marine Science 80: 595–607.Google Scholar
  56. Nagelkerken, I. 2009. Evaluation of nursery function of mangroves and seagrass beds for tropical decapods and reef fishes: Patterns and underlying mechanisms. In Ecological connectivity among tropical coastal ecosystems, ed. I. Nagelkerken, 357–399. Dordrecht, the Netherlands: Springer Science and Business Media.CrossRefGoogle Scholar
  57. Nagelkerken, I., A.M. de Schryver, M.C. Verweij, F. Dahdouh-Guebas, G. van der Velde, and N. Koedam. 2010. Differences in root architecture influence attraction of fishes to mangroves: A field experiment mimicking roots of different length, orientation, and complexity. Journal of Experimental Marine Biology and Ecology 396: 27–34.CrossRefGoogle Scholar
  58. Nagelkerken, I., M. Dorenbosch, W. Verberk, E. Cocheret de la Morinière, and G. van der Velde. 2000a. Day-night shifts of fishes between shallow-water habitats of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Marine Ecology Progress Series 194: 55–64.CrossRefGoogle Scholar
  59. Nagelkerken, I., M. Dorenbosch, W. Verberk, E. Cocheret de la Morinière, and G. van der Velde. 2000b. Importance of shallow-water habitats of a Caribbean bay for juvenile coral reef fishes: Patterns in habitat association, community structure and spatial distribution. Marine Ecology Progress Series 202: 175–192.CrossRefGoogle Scholar
  60. Nagelkerken, I., and G. van der Velde. 2002. Do non-estuarine mangroves harbour higher densities of juvenile fish than adjacent shallow-water and coral reef habitats in Curaçao (Netherlands Antilles)? Marine Ecology Progress Series 245: 191–204.CrossRefGoogle Scholar
  61. Nagelkerken, I., and G. van der Velde. 2003. Connectivity between coastal habitats of two oceanic Caribbean islands as inferred from ontogenetic shifts by coral reef fishes. Gulf and Caribbean Research 14: 43–59.Google Scholar
  62. Nagelkerken, I., and G. van der Velde. 2004. A comparison of fish communities of subtidal seagrass beds and sandy seabeds in 13 marine embayments of a Caribbean island, based on species, families, size distribution and functional groups. Journal of Sea Research 52: 127–147.CrossRefGoogle Scholar
  63. Nagelkerken, I., and C.H. Faunce. 2008. What makes mangroves attractive to fish? Use of artificial units to test the influence of water depth, cross-shelf location, and presence of root structure. Estuarine, Coastal and Shelf Science 79: 559–565.CrossRefGoogle Scholar
  64. Nagelkerken, I., M.G.G. Grol, and P.J. Mumby. 2012. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities. PLoS ONE 7: e36906.CrossRefGoogle Scholar
  65. Nagelkerken, I., S. Kleijnen, T. Klop, R. van der Brand, E. Cocheret de la Morinière, and G. van der Velde. 2001. Dependence of Caribbean reef fishes on mangroves and seagrass beds as nursery habitats: A comparison of fish faunas between bays with and without mangroves/seagrass beds. Marine Ecology Progress Series 214: 225–235.CrossRefGoogle Scholar
  66. Nagelkerken, I., C.M. Roberts, G. van der Velde, M. Dorenbosch, M.C. van Riel, E. Cocheret de la Morinière, and P.H. Nienhuis. 2002. How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Marine Ecology Progress Series 244: 299–305.CrossRefGoogle Scholar
  67. Nagelkerken, I., M. Sheaves, R. Baker, and R.M. Connolly. 2015. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish and Fisheries. doi: 10.1111/faf.12057.
  68. Nagelkerken, I., G. van der Velde, M.W. Gorissen, G.J. Meijer, T. van't Hof, and C. den Hartog. 2000c. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuarine, Coastal and Shelf Science 51: 31–44.CrossRefGoogle Scholar
  69. Nagelkerken, I., G. van der Velde, W.C.E.P. Verberk, and M. Dorenbosch. 2006. Segregation along multiple resource axes in a tropical seagrass fish community. Marine Ecology Progress Series 308: 79–89.CrossRefGoogle Scholar
  70. Nakamura, Y., M. Horinouchi, T. Shibuno, Y. Tanaka, T. Miyajima, I. Koike, H. Kurokura, and M. Sano. 2008. Evidence of ontogenetic migration from mangroves to coral reefs by black-tail snapper Lutjanus fulvus: Stable isotope approach. Marine Ecology Progress Series 355: 257–266.CrossRefGoogle Scholar
  71. Nakamura, Y., and M. Sano. 2005. Comparison of invertebrate abundance in a seagrass bed and adjacent coral and sand areas at Amitori Bay, Iriomote Island, Japan. Fisheries Science 71: 543–550.CrossRefGoogle Scholar
  72. Ogden, J.C., and P.R. Ehrlich. 1977. The behavior of heterotypic resting schools of juvenile grunts (Pomadasyidae). Marine Biology 42: 273–280.CrossRefGoogle Scholar
  73. Robblee, M.B., and J.C. Zieman. 1984. Diel variation in the fish fauna of a tropical seagrass feeding ground. Bulletin of Marine Science 34: 335–345.Google Scholar
  74. Robertson, A.I., and N.C. Duke. 1987. Mangroves as nursery sites: comparisons of the abundance and species composition of fish and crustaceans in mangroves and other nearshore habitats in tropical Australia. Marine Biology 96: 193–205.CrossRefGoogle Scholar
  75. Rönnbäck, P., M. Troell, N. Kautsky, and J.H. Primavera. 1999. Distribution pattern of shrimps and fish among Avicennia and Rhizophora microhabitats in the Pagbilao mangroves, Philippines. Estuarine, Coastal and Shelf Science 48: 223–234.CrossRefGoogle Scholar
  76. Sandilyan, S., and K. Kathiresan. 2012. Mangrove conservation: A global perspective. Biodiversity and Conservion 21: 3523–3542.CrossRefGoogle Scholar
  77. Sandilyan, S., K. Thiyagesan, R. Nagarajan, and J. Venketasan. 2010. Salinity rise in Indian mangroves—A looming danger for coastal biodiversity. Current Science 98: 754–756.Google Scholar
  78. Sheaves, M., R. Baker, and R. Johnston. 2006. Marine nurseries and effective juvenile habitats: An alternative view. Marine Ecology Progress Series 318: 303–306.CrossRefGoogle Scholar
  79. Sheaves, M., R. Baker, I. Nagelkerken, and R.M. Connolly. 2014. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuaries and Coasts. doi: 10.1007/s12237-014-9846-x.Google Scholar
  80. Sheridan, P., and C. Hays. 2003. Are mangroves nursery habitat for transient fishes and decapods? Wetlands 23: 449–458.CrossRefGoogle Scholar
  81. Tavares, R. 2008. Occurrence, Diet and Growth of Juvenile Blacktip Sharks, Carcharhinus limbatus, from Los Roques Archipelago National Park, Venezuela. Caribbean Journal of Science 44: 291–302.Google Scholar
  82. Tuya, F., M.A. Vanderklift, T. Wernberg, and M.S. Thomsen. 2011. Gradients in the number of species at reef-seagrass ecotones explained by gradients in abundance. PLoS ONE 6: e20190.CrossRefGoogle Scholar
  83. van Moorsel, G., and A.J.M. Meijer. 1993. Base-line ecological study van het Lac op Bonaire. Report nr. 92.22, 168. Culemborg, the Netherlands: Bureau Waardenburg bv.Google Scholar
  84. Verweij, M.C., and I. Nagelkerken. 2007. Short and long-term movement and site fidelity of juvenile Haemulidae in back-reef habitats of a Caribbean embayment. Hydrobiologia 592: 257–270.CrossRefGoogle Scholar
  85. Verweij, M.C., I. Nagelkerken, D. de Graaff, M. Peeters, E.J. Bakker, and G. van der Velde. 2006a. Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment. Marine Ecology Progress Series 306: 257–268.CrossRefGoogle Scholar
  86. Verweij, M.C., I. Nagelkerken, S.L.J. Wartenbergh, I.R. Pen, and G. van der Velde. 2006b. Caribbean mangroves and seagrass beds as daytime feeding habitats for juvenile French grunts, Haemulon flavolineatum. Marine Biology 149: 1291–1299.CrossRefGoogle Scholar
  87. Verweij, M.C., I. Nagelkerken, I. Hans, S.M. Ruseler, and P.R.D. Mason. 2008. Seagrass nurseries contribute to coral reef fish populations. Limnology and Oceanography 53: 1540–1547.CrossRefGoogle Scholar
  88. Wagenaar Hummelinck, P., and P.J. Roos. 1970. Een natuurwetenschappelijk onderzoek gericht op het behoud van het Lac op Bonaire. New West Indian Guide/Nieuwe West-Indische Gids 47: 1–26.CrossRefGoogle Scholar
  89. Willette, D.A., J. Chalifour, A.O. Debrot, M.S. Engel, J. Miller, H.A. Oxenford, J.T. Short, S.C.C. Steiner, and F. Védie. 2013. Continued expansion of the globally invasive marine angiosperm Halophila stipulacea in the Eastern Caribbean. Aquatic Botany 112: 98–102.CrossRefGoogle Scholar
  90. Xavier, J.H.A., C.A.M.M. Cordeiro, G.D. Tenório, A. de Farias Diniz, E.P.N.P. Júnior, R.S. Rosa, and I.L. Rosa. 2012. Fish assemblage of the Mamanguape environmental protection area, NE Brazil: Abundance, composition and microhabitat availability along the mangrove-reef gradient. Neotropical Ichthyology 10: 109–122.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  • A. Hylkema
    • 1
    • 2
  • W. Vogelaar
    • 1
    • 2
  • H. W. G. Meesters
    • 1
  • I. Nagelkerken
    • 3
  • A. O. Debrot
    • 1
  1. 1.Institute for Marine Research and Ecosystem StudiesWageningen URDen HelderThe Netherlands
  2. 2.Aquatic Ecology and Water Quality Management groupWageningen UniversityWageningenThe Netherlands
  3. 3.Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, DX 650 418The University of AdelaideAdelaideAustralia

Personalised recommendations