Estuaries and Coasts

, Volume 38, Issue 5, pp 1664–1677 | Cite as

Reduced Cover of Drifting Macroalgae Following Nutrient Reduction in Danish Coastal Waters

  • Jonas Ribergaard Rasmussen
  • Karsten Michael Dromph
  • Cordula Göke
  • Dorte Krause-Jensen


Based on a large dataset from the national Danish monitoring programme, we analysed the temporal variability of drifting algae cover in shallow (1–2 m) water during a period of reduced nutrient loadings. Algal cover was analysed both in absolute terms and relative to eelgrass, Zostera marina, cover to test the hypotheses that (1) the cover of drifting algae and the relative dominance of algae versus eelgrass in shallow waters have declined in parallel to reductions in nutrient levels during the last decades, and (2) spatio-temporal differences in algal cover can be related to differences in nutrient conditions and environmental characteristics. The cover of drifting algae was positively related to total nitrogen concentration and Secchi depth but negatively related to exposure, salinity and mean summer temperature. The cover of drifting macroalgae showed significant declines over the past two decades, paralleling the reduction in nutrient concentrations. The present cover of drifting algae is low (<10 %) and probably pose little threat to the general distribution of eelgrass in shallow Danish waters though local accumulations may still be harmful. However, the ratio between drifting algae cover and eelgrass cover showed no significant trend, reflecting that eelgrass cover had not increased despite the reduced levels of nutrients and drifting algae. This ratio also showed no consistent relationship to water quality probably because different regulation mechanisms govern drifting algae and eelgrass, and feedback mechanisms may delay eelgrass recovery. Reduced drift algal cover may be an early sign of improved ecological status, while further improvements in terms of recovery of eelgrass meadows have longer perspectives.


Drift algae Eelgrass Zostera marina Nitrogen Nutrients Relative exposure index 



This project was funded by the Danish Agency for Science, Technology and Innovation (REELGRASS; contract #09-063190), the European Commission (WISER contract #FP7-226273 and DEVOTES contract #FP-308392) and the project WATERS funded by the Swedish Environmental Protection Agency. We thank Michael Stjernholm, Bioscience, Aarhus University, for initial discussions on exposure calculations and Per-Olav Moksnes, Department of Biological and Environmental Sciences, University of Gothenburg, Sweden, for information on the distribution of algae and eelgrass along the Swedish west coast.


  1. Andersen, J., S. Markager, and G. Ærtebjerg. 2004. NOVANA; Tekniske anvisninger for marin overvågning. Ch. 3.1. In Danish.
  2. Andersson, S., M. Persson, P.O. Moksnes, and S. Baden. 2009. The role of the amphipod Gammarus locusta as a grazer on macroalgae in Swedish seagrass meadows. Marine Biology 156: 969–981.CrossRefGoogle Scholar
  3. Baden, S., M. Gullström, B. Lundén, L. Pihl, and R. Rosenberg. 2003. Vanishing seagrass (Zostera marina, L.) in Swedish coastal waters. Ambio 32: 374–377.CrossRefGoogle Scholar
  4. Baden, S., C. Bostrom, S. Tobiasson, H. Arponen, and P.O. Moksnes. 2010. Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: a broad-scale field experiment in the Baltic-Skagerrak area. Limnology and Oceanography 55: 1435–1448.CrossRefGoogle Scholar
  5. Baden, S., A. Emanuelsson, L. Pihl, C.J. Svensson, and P. berg. 2012. Shift in seagrass food web structure over decades is linked to overfishing. Marine Ecology Progress Series 451: 61–73.CrossRefGoogle Scholar
  6. Berglund, J., J. Mattila, O. Rönnberg, J. Heikkilä, and E. Bonsdorff. 2003. Seasonal and inter-annual variation in occurrence and biomass of rooted macrophytes and drift algae in shallow bays. Estuarine, Coastal and Shelf Science 56: 1167–1175.CrossRefGoogle Scholar
  7. Borum, J., and K. Sand-Jensen. 1996. Is total primary production in shallow coastal marine waters stimulated by nitrogen loading? Oikos 76: 406–410.CrossRefGoogle Scholar
  8. Borum, J., O. Pedersen, T.M. Greve, T.A. Frankovich, J.C. Zieman, J.W. Fourqurean, and C.J. Madden. 2005. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology 93: 148–158.CrossRefGoogle Scholar
  9. Boström, C., S.P. Baden, and D. Krause-Jensen. 2003. The seagrasses of Scandinavia and the Baltic Sea. In World atlas of seagrasses, ed. E.P. Green and F.T. Short, 27–37. Berkeley, USA: University of California Press.Google Scholar
  10. Boström, C., S. Baden, A.-C. Bockelmann, K. Dromph, S. Frederiksen, C. Gustafsson, D. Krause-Jensen, T. Möller, S.L. Nielsen, B. Olesen, J. Olsen, L. Pihl, and E. Rinde. 2014. Distribution and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and restoration. Aquatic Conservation: Marine and Freshwater Ecosystems. doi: 10.1002/aqc.2424.Google Scholar
  11. Canal-Vergés, P., M. Vedel, T. Valdemarsen, E. Kristensen, and M.R. Flindt. 2010. Resuspension created by bedload transport of macroalgae: implications for ecosystem functioning. Hydrobiologia 649: 69–76.CrossRefGoogle Scholar
  12. Carstensen, J., and A. Weydmann. 2012. Tipping points in the Arctic: eyeballing or statistical significance? Ambio 41: 34–43.CrossRefGoogle Scholar
  13. Cebrián, J., and C.M. Duarte. 1995. Plant growth-rate dependence of detrital carbon storage in the oceans. Science 268: 1606–1608.CrossRefGoogle Scholar
  14. Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.CrossRefGoogle Scholar
  15. Conley, D.J., H.W. Paerl, R.W. Howarth, D.F. Boesch, S.P. Seitzinger, K.E. Havens, C. Lancelot, and G.E. Likens. 2009. Ecology. Controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015.CrossRefGoogle Scholar
  16. den Hartog, C. 1994. Suffocation of a littoral Zostera bed by Enteromorpha radiata. Aquatic Botany 47: 21–28.CrossRefGoogle Scholar
  17. den Hartog, C. 1997. Is Sargassum muticum a threat to eelgrass beds? Aquatic Botany 58: 37–41.CrossRefGoogle Scholar
  18. Duarte, C.M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112.CrossRefGoogle Scholar
  19. Duarte, C.M., D.J. Conley, J. Carstensen, and M. Sánchez-Camacho. 2009. Return to neverland: shifting baselines affect eutrophication restoration targets. Estuaries and Coasts 32: 29–36.CrossRefGoogle Scholar
  20. Duarte, C.M., A. Borja, J. Carstensen, M. Elliot, D. Krause-Jensen, and N. Marbà. 2013. Paradigms in the recovery of estuarine and coastal ecosystems. Estuaries and Coasts. doi: 10.1007/s12237-013-9750-9.Google Scholar
  21. Fonseca, M., P.E. Whitfield, N.M. Kelly, and S.S. Bell. 2002. Modeling seagrass landscape pattern and associated ecological attributes. Ecological Applications 12: 218–237.CrossRefGoogle Scholar
  22. Geertz-Hansen, O., K. Sand-Jensen, D.F. Hansen, and A. Christiansen. 1993. Growth and grazing control of abundance of the marine macroalga, Ulva lactuca l in a eutrophic Danish estuary. Aquatic Botany 46: 101–109.CrossRefGoogle Scholar
  23. Greening, H.S., L.M. Cross, and E.T. Sherwood. 2011. A multiscale approach to seagrass recovery in Tampa Bay, Florida. Ecological Restoration 29: 1–2.CrossRefGoogle Scholar
  24. Gutiérrez, J.L., C.G. Jones, J.E. Byers, K.K. Arkema, K. Berkenbusch, J.A. Commito, C.M. Duarte, S.D. Hacker, J.G. Lambrinos, I.E. Hendriks, P.J. Hogarth, M.G. Palomo, and C. Wild. 2011. Physical ecosystem engineers and the functioning of estuaries and coasts. Treatise on Estuarine and Coastal Science 7: 53–81.CrossRefGoogle Scholar
  25. Hansen, J. W. (Ed.) 2013. Marine områder 2012: NOVANA. Tilstand og udvikling i miljø-og naturkvaliteten. Aarhus University; DCE - Danish Centre for Environment and Energy. Scientific report no. 77, 162 pp. In Danish.
  26. Hein, M., M.F. Pedersen, and K. Sand-Jensen. 1995. Size-dependent nitrogen uptake in micro- and macroalgae. Marine Ecology Progress Series 118: 247–253.CrossRefGoogle Scholar
  27. Howarth, R., F. Chan, D.J. Conley, J. Garnier, S.C. Doney, R. Marino, and G. Billen. 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment 9: 18–26.CrossRefGoogle Scholar
  28. Jephson, T., P. Nystrom, P.O. Moksnes, and S.P. Baden. 2008. Trophic interactions in Zostera marina beds along the Swedish coast. Marine Ecology Progress Series 369: 63–76.CrossRefGoogle Scholar
  29. Jones, H.P., and O.J. Schmitz. 2009. Rapid recovery of damaged ecosystems. PLoS One 4(5): e5653.CrossRefGoogle Scholar
  30. Kaas, H. and S. Markager. 1998. NOVA; Tekniske anvisninger for marin overvågning. Ch. 12. In Danish.
  31. Kopecky, A.L., and K.H. Dunton. 2006. Variability in drift macroalgal abundance in relation to biotic and abiotic factors in two seagrass dominated estuaries in the western Gulf of Mexico. Estuaries and Coasts 29: 617–629.CrossRefGoogle Scholar
  32. Krause-Jensen, D., K. McGlathery, S. Rysgaard, and P.B. Christensen. 1996. Production within dense mats of the filamentous macroalga Chaetomorpha linum in relation to light and nutrient availability. Marine Ecology Progress Series 134: 207–216.CrossRefGoogle Scholar
  33. Krause-Jensen, D., J. Carstensen, and K. Dahl. 2007. Total and opportunistic algal cover in relation to environmental variables. Marine Pollution Bulletin 55: 114–125.CrossRefGoogle Scholar
  34. Krause-Jensen, D., S. Markager, and T. Dalsgaard. 2012. Benthic and pelagic primary production in different nutrient regimes. Estuaries and Coasts 35: 527–545.CrossRefGoogle Scholar
  35. Laursen, J. S., D. Krause-Jensen, and S. E. Larsen. 2000. Interkalibrering af metode til undersøgelser af bundvegetation i marine områder. 329: Ministry of Environment and Energy, Denmark.Google Scholar
  36. Littler, M.M., and D.S. Littler. 1980. The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. The American Natural 116: 25–44.CrossRefGoogle Scholar
  37. Lotze, H.K., M. Coll, A.M. Magera, C. Ward-Paige, and L. Airoldi. 2011. Recovery of marine animal populations and ecosystems. Trends in Ecology and Evolution 26: 595–605.CrossRefGoogle Scholar
  38. Middelboe, A.L., K. Sand-Jensen, and K. Brodersen. 1997. Patterns of macroalgal distribution in the Kattegat-Baltic region. Phycologia 36: 208–219.CrossRefGoogle Scholar
  39. Middelboe, A.L., K. Sand-Jensen, and D. Krause-Jensen. 1998. Patterns of macroalgal species diversity Danish estuaries. Journal of Phycology 34: 457–466.CrossRefGoogle Scholar
  40. Moksnes, P.O., M. Gullström, K. Tryman, and S. Baden. 2008. Trophic cascades in a temperate seagrass community. Oikos 117: 763–777.CrossRefGoogle Scholar
  41. Nielsen, R., A. Kristiansen, L. Mathiesen, and H. Mathiesen. 1995. Distributional index of the benthic macroalgae of the Baltic Sea area. Acta Botanica Fennica 155.Google Scholar
  42. Olyarnik, S.V., and J.J. Stachowicz. 2012. Multi-year study of the effects of Ulva sp. blooms on eelgrass Zostera marina. Marine Ecology Progress Series 468: 107–117.CrossRefGoogle Scholar
  43. Orfanidis, S., P. Panayotidis, and N. Stamatis. 2003. An insight to the ecological evaluation index (EEI). Ecological Indicators 3: 27–33.CrossRefGoogle Scholar
  44. Orfanidis, S., P. Panayotidis, and K. Ugland. 2011. Ecological evaluation index continuous formula (EEI-c) application: a step forward for functional groups, the formula and reference condition values. Mediterranean Marine Science 12: 199–231.CrossRefGoogle Scholar
  45. Orth, R.J., and K.J. McGlathery. 2012. Eelgrass recovery in the coastal bays of the Virginia Coast Reserve, USA. Marine Ecology Progress Series 448: 173–176.CrossRefGoogle Scholar
  46. Padilla, D.K., and B.J. Allen. 2000. Paradigm lost: reconsidering functional form and group hypotheses in marine ecology. Journal of Experimental Marine Biology and Ecology 250: 207–221.CrossRefGoogle Scholar
  47. Panayotidis, P., B. Montesanto, and S. Orfanidis. 2004. Use of low-budget monitoring of macroalgae to implement the European Water Framework Directive. Journal of Applied Phycology 16: 49–59.CrossRefGoogle Scholar
  48. Pedersen, M.F., and J. Borum. 1996. Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Marine Ecology Progress Series 142: 261–272.CrossRefGoogle Scholar
  49. Pedersen, M.F., and J. Borum. 1997. Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Marine Ecology Progress Series 161: 155–163.CrossRefGoogle Scholar
  50. Persson, M., S. Andersson, S. Baden, and P.O. Moksnes. 2008. Trophic role of the omnivorous grass shrimp Palaemon elegans in a Swedish eelgrass system. Marine Ecology Progress Series 371: 203–212.CrossRefGoogle Scholar
  51. Pihl, L., I. Isaksson, H. Wennhage, and P.O. Moksnes. 1995. Recent increase of filamentous algae in shallow Swedish bays: effects on the community structure of epibenthic fauna and fish. Netherlands Journal of Aquatic Ecology 29: 349–358.CrossRefGoogle Scholar
  52. Pihl, L., A. Svenson, P.O. Moksnes, and H. Wennhage. 1999. Distribution of green algal mats throughout shallow soft bottoms of the Swedish Skagerrak archipelago in relation to nutrient sources and wave exposure. Journal of Sea Research 41: 281–294.CrossRefGoogle Scholar
  53. Pulido, C., and J. Borum. 2010. Eelgrass (Zostera marina) tolerance to anoxia. Journal of Experimental Marine Biology and Ecology 385: 8–13.CrossRefGoogle Scholar
  54. Rasmussen, J.R., B. Olesen, and D. Krause-Jensen. 2012. Effects of filamentous macroalgae mats on growth and survival of eelgrass, Zostera marina, seedlings. Aquatic Botany 99: 41–48.CrossRefGoogle Scholar
  55. Rasmussen, J.R., M.F. Pedersen, B. Olesen, S.L. Nielsen, and T.M. Pedersen. 2013. Temporal and spatial dynamics of ephemeral drift-algae in eelgrass, Zostera marina, beds. Estuarine, Coastal and Shelf Science 119: 167–175.CrossRefGoogle Scholar
  56. Risinger, B. 2012. God havsmiljö 2020. Göteborg: Havs-och vattenmyndigheten. In Swedish.Google Scholar
  57. Salomonsen, J., M. Flindt, O. Geertz-Hansen, and C. Johansen. 1999. Modelling advective transport of Ulva lactuca (L) in the sheltered bay, Møllekrogen, Roskilde Fjord, Denmark. Hydrobiologia 397: 241–252.CrossRefGoogle Scholar
  58. Sand-Jensen, J., and J. Borum. 1991. Interactions among phytoplankton, periphyton and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.CrossRefGoogle Scholar
  59. SAS Institute Inc. 2008. SAS/ETS (C) 9.2 user's guide. Cary, North Carolina: SAS Institute Inc.Google Scholar
  60. SAS Institute Inc. 2009. SAS/ETS (C) 9.2 user's guide, 2nd ed. Cary, North Carolina: SAS Institute Inc.Google Scholar
  61. Scheffer, M., S. Carpenter, J.A. Foley, C. Folke, and B. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.CrossRefGoogle Scholar
  62. Schmidt, A.L., J.K.C. Wysmyk, S.E. Craig, and H.K. Lotze 2012. Regional scale effects of eutrophication on ecosystem structure and services of seagrass beds. Limnology and Oceanography 57: 1389–1402.Google Scholar
  63. Sokal, R.R., and F.J. Rohlf. 2012. Biometry: the principles and practice of statistics in biological research. New York: W.H. Freeman.Google Scholar
  64. Stæhr, P.A., M.F. Pedersen, M.S. Thomsen, T. Wernberg, and D. Krause-Jensen. 2000. Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. Marine Ecology Progress Series 207: 79–88.CrossRefGoogle Scholar
  65. Taylor, R., R.L. Fletcher, and J.A. Raven. 2001. Preliminary studies on the growth of selected 'Green tide' algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Botanica Marina 44: 327–336.CrossRefGoogle Scholar
  66. Thomsen, M.S., T. Wernberg, P.A. Stæhr, and M.F. Pedersen. 2006. Spatio-temporal distribution patterns of the invasive macroalga Sargassum muticum within a Danish Sargassum-bed. Helgoland Marine Research 60: 50–58.CrossRefGoogle Scholar
  67. Thybo-Christesen, M., M.B. Rasmussen, and H. Blackburn. 1993. Nutrient fluxes and growth of Cladophora sericea in a shallow Danish bay. Marine Ecology Progress Series 100: 273–281.CrossRefGoogle Scholar
  68. Tsiamis, K., P. Panayotidis, M. Salomidi, A. Pavlidou, J. Kleintech, K. Balanika, and F. Küpper. 2013. Macroalgal community response to re-oligotrophication in the Saronikos Gulf. Marine Ecology Progress Series 472: 73–85.CrossRefGoogle Scholar
  69. Valdemarsen, T., P. Canal-Vergés, E. Kristensen, M. Holmer, M.D. Kristiansen, and M.R. Flindt. 2010. Vulnerability of Zostera marina seedlings to physical stress. Marine Ecology Progress Series 418: 119–130.CrossRefGoogle Scholar
  70. Valiela, I., J. McClelland, J. Hauxwell, P.J. Behr, D. Hersh, and K. Foreman. 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 1105–1118.CrossRefGoogle Scholar
  71. van der Heide, T., E.H. van Nes, M.M. van Katwijk, H. Olff, and A.J.P. Smolders. 2011. Positive feedbacks in seagrass ecosystems—evidence from large-scale empirical data. PLoS One 6(1): e16504. doi: 10.1371/journal.pone. 0016504.CrossRefGoogle Scholar
  72. Waycott, M., C.M. Duarte, T.J.B. Cattuthers, R.J. Orth, W.C. Dennison, S. Olayarnik, A. Calladine, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106: 12377–12381.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  • Jonas Ribergaard Rasmussen
    • 1
    • 4
  • Karsten Michael Dromph
    • 2
  • Cordula Göke
    • 2
  • Dorte Krause-Jensen
    • 3
  1. 1.Department of BioscienceAarhus UniversityAarhus CDenmark
  2. 2.Department of BioscienceAarhus UniversityRoskildeDenmark
  3. 3.Department of BioscienceAarhus UniversitySilkeborgDenmark
  4. 4.NørresundbyDenmark

Personalised recommendations