Estuaries and Coasts

, Volume 38, Issue 4, pp 1163–1177 | Cite as

CO2-Driven Ocean Acidification Disrupts the Filter Feeding Behavior in Chilean Gastropod and Bivalve Species from Different Geographic Localities

  • Cristian A. Vargas
  • Victor M. Aguilera
  • Valeska San Martín
  • Patricio H. Manríquez
  • Jorge M. Navarro
  • Cristian Duarte
  • Rodrigo Torres
  • Marco A. Lardies
  • Nelson A. Lagos


We present experimental data obtained with newly hatched veliger larvae of the gastropod Concholepas concholepas and juveniles of the mussel Perumytilus purpuratus exposed to three pCO2 levels. Egg capsules of C. concholepas were collected from three geographic locations in northern (Antofagasta), central (Las Cruces), and southern Chile (Calfuco), and then incubated throughout their entire intra-capsular life cycle at three nominal pCO2 levels, ~400, 700, and 1,000 ppm. Similarly, P. purpuratus were collected from both Las Cruces and Calfuco and exposed to the same pCO2 levels during 6 weeks. Hatched gastropod larvae and mussel juvenile were fed with the haptophyte Isochrysis galbana. Clearance and ingestion rates were estimated for newly hatched larvae, and for juvenile mussel these rates were measured at two observation times (3 and 6 weeks). Our results clearly showed a significant negative effect of elevated pCO2 on the clearance and ingestion for both C. concholepas larvae and P. purpuratus juveniles, which dropped between 15 up to 70 % under high pCO2 conditions. The present study has also shown large variations in the sensitivities of C. concholepas larvae from different local populations (i.e. Antofagasta, Las Cruces, and Calfuco). The influence of both corrosive upwelling waters and the influence of freshwater discharges from Maipo River may explain the minor negative effect of high pCO2 conditions in hatched larvae from Las Cruces’ egg capsules, which would suggest that they are inherently more tolerant to ocean acidification (OA) than organisms that live on regions with a lower pCO2 variability. The present study suggests the need for site-specific studies and reveals the important effect of low pH conditions on feeding activity. Furthermore, this study supports the notion that feeding is a key physiological process susceptible to the effects of OA in marine invertebrates.


Acidification Newly hatched larvae Gastropod Mussel juveniles Feeding 



We acknowledge the skillful help of all assistants involved in this research, especially to Haydee Müller, Karin Acuña, Loreto Mardones, and María Elisa Jara for their logistic support. This work was supported by the Proyecto Anillos ACT-132 by CONICYT (Comisión Nacional de Investigación Científica y Tecnológica) (; Fondecyt Grant 1090624 (TOA-SPACE Project), and Millennium Nucleus Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS) funded by MINECON NC120086. Finally, the Millennium Institute of Oceanography (IMO) funded by MINECON IC120019 also supported this work during the final stage. CAV is supported by Red Doctoral REDOC.CTA, MINEDUC project UCO1202 at U. de Concepción.


  1. Aguilera, V.M., C.A. Vargas, P.H. Manríquez, J.M. Navarro, and C. Duarte. 2013. Low-pH freshwater discharges drive spatial and temporal variations in life history traits of neritic copepod Acartia tonsa. Estuaries and Coasts 1–9.Google Scholar
  2. Baldwin, B.S., and R.I.E. Newell. 1991. Omnivorous feeding by planktotrophic larvae of the eastern oyster Crassostrea virginica. Marine Ecology Progress Series 78: 285–301.CrossRefGoogle Scholar
  3. Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnology and Oceanography 57: 698–710.CrossRefGoogle Scholar
  4. Beniash, E., A. Ivanina, N.S. Lieb, I. Kurochkin, and I.A. Sokolova. 2010. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Marine Ecology Progress Series 419: 95–108.CrossRefGoogle Scholar
  5. Byrne, M. 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology: An Annual Review 49: 1–42.Google Scholar
  6. Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365.Google Scholar
  7. Chan, K.Y.K., D. Grünbaum, and M.J. O’Donnell. 2011. Effects of ocean-acidification-induced morphological changes on larval swimming and feeding. The Journal of Experimental Biology 214: 3857–3867.CrossRefGoogle Scholar
  8. Coughlan, J. 1969. The estimation of filtering rate from the clearance of suspensions. Marine Biology 2: 356–358.CrossRefGoogle Scholar
  9. Cummings, V., J. Hewitt, A. Van Rooyen, K. Currie, S. Beard, S. Thrush, and V. Metcalf. 2011. Ocean acidification at high latitudes: potential effects on functioning of the antarctic bivalve Laternula elliptica. PLoS One 6: e16069.CrossRefGoogle Scholar
  10. Denis, L., E. Alliot, and D. Grzebyk. 1999. Clearance rate responses of Mediterranean mussels, Mytilus galloprovincialis, to variations in the flow, water temperature, food quality and quantity. Aquatic Living Resources 12: 279–288.CrossRefGoogle Scholar
  11. Dickson, A.G., and F.J. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A: Oceanographic Research Papers 34: 1733–1743.CrossRefGoogle Scholar
  12. DOE. 1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, version 2. In Report ORNL/CDIAC-74, ed. Dickson, A.G. and C. Goyet. Oak Ridge: Oak Ridge National Laboratory.Google Scholar
  13. Doney, S.C., M. Ruckelshaus, J.E. Duffy, J.P. Barry, F. Chan, C.A. English, and L.D. Talley. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4: 11–37.CrossRefGoogle Scholar
  14. Duarte, C.A., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J.A. Trotter, and M. McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36(2): 221–236.CrossRefGoogle Scholar
  15. Egge, J.K., J.F. Thingstad, A. Larsen, A. Engel, J. Wohlers, R. Bellerby, and U. Riebesell. 2009. Primary production during nutrient-induced blooms at elevated CO2 concentrations. Biogeosciences 6: 877–885.CrossRefGoogle Scholar
  16. Engel, A., K.G. Schulz, U. Riebesell, R. Bellerby, B. Delille, and M. Schartau. 2008. Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II). Biogeosciences 5: 509–521.CrossRefGoogle Scholar
  17. Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science: Journal du Conseil 65: 414–432.CrossRefGoogle Scholar
  18. Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320: 1490–1492.CrossRefGoogle Scholar
  19. Feng, Y., C.E. Hare, K. Leblanc, J.M. Rose, Y. Zhang, G.R. DiTullio, and D.A. Hutchins. 2009. The effects of increased pCO2 and temperature on the North Atlantic spring bloom: I. The phytoplankton community and biogeochemical response. Marine Ecology Progress Series 388: 13–25.CrossRefGoogle Scholar
  20. Fernández-Reiriz, M.J., P. Range, X.A. Álvarez-Salgado, and U. Labarta. 2011. Physiological energetics of juvenile clams Ruditapes decussatus in a high CO2 coastal ocean. Marine Ecology Progress Series 433: 97–105.CrossRefGoogle Scholar
  21. Findlay, H.S., M.A. Kendall, J.I. Spicer, C. Turley, and S. Widdicombe. 2008. Novel microcosm system for investigating the effects of elevated carbon dioxide and temperature on intertidal organisms. Aquatic Biology 3: 51–62.CrossRefGoogle Scholar
  22. Frost, B.W. 1975. A threshold feeding behavior in Calanus pacificus. Limnology and Oceanography 1: 263–266.CrossRefGoogle Scholar
  23. Gallardo, C.S. 1973. Desarrollo intracapsular de Concholepas concholepas (Brugière) (Gastropoda, Muricidae). Publicación ocasional. Museo nacional de Historia Natural (Chile) 16.Google Scholar
  24. Gazeau, F., L.M. Parker, S. Comeau, J.P. Gattuso, W.A. O'Connor, S. Martin, H.O. Pörtner, and P.M. Ross. 2013. Impacts of ocean acidification on marine shelled molluscs. Marine Biology 160: 2207–2245.Google Scholar
  25. Haraldsson, C., L.G. Anderson, M. Hassellöv, S. Hulth, K. Olsson. 1997. Rapid, high precision potentiometric titration of alkalinity in ocean and sediment pore waters. Deep-Sea Research Part I: Oceanographic Research Papers 44: 2031–2044.Google Scholar
  26. Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, and T.R. Martz. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6: e28983.CrossRefGoogle Scholar
  27. Holcomb, M., D.C. McCorkle, and A.L. Cohen. 2010. Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). Journal of Experimental Marine Biology and Ecology 386: 27–33.CrossRefGoogle Scholar
  28. Holcomb, M., A.L. Cohen, and D.C. McCorkle. 2012. An investigation of the calcification response of the scleractinian coral Astrangia poculata to elevated pCO2 and the effects of nutrients, zooxanthellae and gender. Biogeosciences 9: 29–39.CrossRefGoogle Scholar
  29. Huang, B., W. Xiang, X. Zeng, K.P. Chiang, H. Tian, J. Hu, and H. Hong. 2011. Phytoplankton growth and microzooplankton grazing in a subtropical coastal upwelling system in the Taiwan Strait. Continental Shelf Research 31: 48–56.CrossRefGoogle Scholar
  30. Kurihara, H., S. Shimode, and Y. Shirayama. 2004. Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. Journal of Oceanography 60: 743–750.CrossRefGoogle Scholar
  31. Lagos, N.A., J.C. Castilla, and B.R. Broitman. 2008. Spatial environmental correlates of intertidal recruitment: a test using barnacles in Northern Chile. Ecological Monographs 78: 245–261.CrossRefGoogle Scholar
  32. Lagos, N.A., L. Prado, L. Ramajo, C.A. Vargas, R. Torres, P.H. Manríquez, J.M. Navarro, M.A. Lardies, C. Duarte, and G. Saldías. 2013. Divergent population and community patterns on faunal assemblages associated to intertidal mussel beds: influence of corrosive freshwater input on benthic ecosystems. In this issue.Google Scholar
  33. Leiva, G.E., and J.C. Castilla. 2001. A review of the world marine gastropod fishery: evolution of catches, management and the Chilean experience. Reviews in Fish Biology and Fisheries 11: 283–300.CrossRefGoogle Scholar
  34. Levins, R. 1968. Evolution in changing environments. Princeton: Princeton University Press.Google Scholar
  35. Lewis, E. and D. Wallace. 1998. Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge, Tennessee, USA.Google Scholar
  36. Manríquez, P.H., and J.C. Castilla. 2001. Significance of marine protected areas in central Chile as seeding grounds for the gastropod Concholepas concholepas. Marine Ecology Progress Series 215: 201–211.CrossRefGoogle Scholar
  37. Marin, V., M.E. Huntley, and B. Frost. 1986. Measuring feeding rates of pelagic herbivores: analysis of experimental design and methods. Marine Biology 93: 49–58.CrossRefGoogle Scholar
  38. Mehrbach, C., C.H. Culberson, J.E. Hawley, and R.N. Pytkowicz. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18: 897–907.Google Scholar
  39. Meinshausen, M., S.J. Smith, K. Calvin, J.S. Daniel, M.L.T. Kainuma, J.-F. Lamarque, K. Matsumoto, S.A. Montzka, S. Raper, K. Riahi, A. Thomson, G.J.M. Velders, and D.P.P. van Vuuren. 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109: 213–241.CrossRefGoogle Scholar
  40. Melzner, F., P. Stange, K. Trübenbach, J. Thomsen, I. Casties, U. Panknin, and M.A. Gutowska. 2011. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS One 6: e24223.CrossRefGoogle Scholar
  41. Miller, A.W., A.C. Reynolds, C. Sobrino, and G.F. Riedel. 2009. Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS One 4: e5661.CrossRefGoogle Scholar
  42. Navarro, J.M., R. Torres, K. Acuña, C. Duarte, P.H. Manriquez, M. Lardies, and V. Aguilera. 2013. Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 90: 1242–1248.Google Scholar
  43. Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, and A. Yool. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686.CrossRefGoogle Scholar
  44. Osorio, C. 2002. Moluscos marinos en Chile, especies de importancia económica. Facultad de Ciencias Universidad de Chile. 211 pp.Google Scholar
  45. Osorio, C., and N. Bahamonde. 1968. Moluscos bivalvos en pesquerías chilenas. Biología Pesquera 3: 69–128.Google Scholar
  46. Palmer, A.R. 1982. Growth in marine gastropods: a non-destructive technique for independently measuring shell and body weight. Malacologia 23: 63–73.Google Scholar
  47. Pascal, P.Y., J.W. Fleeger, F. Galvez, and K.R. Carman. 2010. The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods. Marine Pollution Bulletin 60: 2201–2208.CrossRefGoogle Scholar
  48. Petersen, K.J., S. Bougrier, A.C. Smaal, P. Garen, S. Robert, J.E.N. Larsen, and E. Brummelhuis. 2004. Intercalibration of mussel Mytilus edulis clearance rate measurements. Marine Ecology Progress Series 267: 187–194.CrossRefGoogle Scholar
  49. Prado, L., and J.C. Castilla. 2006. The bioengineer Perumytilus purpuratus (Mollusca: Bivalvia) in central Chile: biodiversity, habitat structural complexity and environmental heterogeneity. Journal of the Marine Biological Association of the United Kingdom 86: 417–421.CrossRefGoogle Scholar
  50. Ramajo, L., A. Baltanás, R. Torres, P.H. Manríquez, A. Rodriguez-Navarro, and N. Lagos. 2013. Geographic variation in shell morphology of juvenile snails (Concholepas concholepas) along the physical-chemical gradient of the Chilean coast. Journal of Marine Biological Association of the United Kingdom. doi: 10.1017/S0025315413000891.Google Scholar
  51. Range, P., M.A. Chícharo, R. Ben-Hamadou, D. Piló, M.J. Fernandez-Reiriz, U. Labarta, and L. Chícharo. 2013. Impacts of CO2-induced seawater acidification on coastal Mediterranean bivalves and interactions with other climatic stressors. Regional Environmental Change 1–12.Google Scholar
  52. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, and A.F. Rios. 2004. The oceanic sink for anthropogenic CO2. Science 305: 367–371.CrossRefGoogle Scholar
  53. Salisbury, J.E., D. Vandemark, C.W. Hunt, J.W. Campbell, W.R. McGillis, and W.H. McDowell. 2008. Seasonal observations of surface waters in two Gulf of Maine estuary-plume systems: relationships between watershed attributes, optical measurements and surface pCO2. Estuarine, Coastal and Shelf Science 77: 245–252.CrossRefGoogle Scholar
  54. Strathmann, R.R., and E. Leise. 1979. On feeding mechanisms and clearance rates of molluscan veligers. The Biological Bulletin 157: 524–535.CrossRefGoogle Scholar
  55. Strickland, J.D.H., and T.R. Parsons. 1968. Determination of reactive phosphorus. A practical handbook of seawater analysis. Fisheries Research Board of Canada, Bulletin 167: 49–56.Google Scholar
  56. Stuardo, J. 1979. Sobre la clasificación, distribución y variación de Concholepas concholepas (Bruguiere, 1789): Un estudio de taxonomía Beta. Biología Pesquera Chile 12: 5–38.Google Scholar
  57. Stumpp, M., S. Dupont, M.C. Thorndyke, and F. Melzner. 2011. CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology 160: 320–330.CrossRefGoogle Scholar
  58. Stumpp, M., K. Trübenbach, D. Brennecke, M.Y. Hu, and F. Melzner. 2012. Resource allocation and extracellular acid–base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aquatic Toxicology 110: 194–207.CrossRefGoogle Scholar
  59. Thiel, M., E.C. Macaya, E. Acuña, W.E. Arntz, H. Bastías, K. Brokordt, P. Camus, J.C. Castilla, L.R. Castro, M. Cortés, C.P. Dumont, R. Escribano, M. Fernández, J.A. Gajardo, C.F. Gaymer, I. Gomez, A.E. González, H.E. González, P.A. Haye, J.E. Illanes, J.L. Iriarte, D.L. Lancellotti, G. Luna-Jorquera, C. Luxoro, P.H. Manriquez, V. Marín, P. Muñoz, S.A. Navarrete, E. Pérez, E. Poulin, J. Sellanes, H.H. Sepúlveda, W. Stotz, F. Tala, A. Thomas, C.A. Vargas, J.A. Vásquez, and J.M.A. Vega. 2007. The Humboldt Current system of northern and central Chile oceanographic processes, ecological interactions and socioeconomic feedback. Oceanography and Marine Biology: An Annual Review 45: 195–344.Google Scholar
  60. Thomsen, J., and F. Melzner. 2010. Seawater acidification does not elicit metabolic depression in the blue mussel Mytilus edulis. Marine Biology 157: 2667–2676. doi: 10.1007/s00227-010-1527-0.
  61. Thomsen, J., I. Castles, C. Pansch, A. Körtzinger, and F. Melzner. 2013. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Global Change Biology 19: 1017–1027.CrossRefGoogle Scholar
  62. Toro, B., J.M. Navarro, and H. Palma-Fleming. 2003. Relationship between bioenergetics responses and organic pollutants in the giant mussel, Choromytilus chorus (Mollusca: Mytilidae). Aquatic Toxicology 63: 257–269.CrossRefGoogle Scholar
  63. Torres, R., S. Pantoja, N. Harada, H.E. González, G. Daneri, M. Frangopulos, and M. Fukasawa. 2011. Air-sea CO2 fluxes along the coast of Chile: from CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. Journal of Geophysical Research 116, C09006.Google Scholar
  64. Urabe, J., J. Togari, and J.J. Elser. 2003. Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Global Change Biology 9: 818–825.CrossRefGoogle Scholar
  65. Vargas, C.A., D.A. Narváez, A. Piñones, S.A. Navarrete, N.A. Lagos. 2006. River plume dynamic infuences transport of barnacle larvae in the inner shelf o¡ central Chile. Journal of Marine Biological Association of United Kingdom 86: 1057–1065.Google Scholar
  66. Vargas, C.A., M. de la Hoz, V. Aguilera, V. San Martín, P.H. Manríquez, J.M. Navarro, and N.A. Lagos. 2013. CO2-driven ocean acidification reduces larval feeding efficiency and change food selectivity in the mollusk Concholepas concholepas. Journal of Plankton Research 35(5): 1059–1068Google Scholar
  67. Widdicombe, S. and J.L. Spicer. 2008. Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? Journal of Experimental Marine Biology and Ecology 366: 187–197.Google Scholar
  68. Widdicombe, S., S.L. Dashfield, C.L. McNeill, H.R. Needham, A. Beesley, A. McEvoy, and J.A. Berge. 2009. Effects of CO2 induced seawater acidification on infaunal diversity and sediment nutrient fluxes. Marine Ecology Progress Series 379: 59–75.CrossRefGoogle Scholar
  69. Yuras, G., O. Ulloa, and S. Hormazabal. 2005. On the annual cycle of coastal and open ocean satellite chlorophyll off Chile (18–40°S). Geophysical Research Letters 32, L23604. doi: 10.1029/2005GL023946.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  • Cristian A. Vargas
    • 1
    • 2
    • 3
  • Victor M. Aguilera
    • 3
    • 4
  • Valeska San Martín
    • 1
    • 2
  • Patricio H. Manríquez
    • 5
    • 10
  • Jorge M. Navarro
    • 5
  • Cristian Duarte
    • 2
    • 6
  • Rodrigo Torres
    • 7
  • Marco A. Lardies
    • 2
    • 8
    • 9
  • Nelson A. Lagos
    • 2
    • 10
  1. 1.Aquatic Ecosystem Functioning Lab (LAFE), Department of Aquatic System, Faculty of Environmental Sciences & Environmental Sciences Center EULA ChileUniversidad de ConcepciónConcepciónChile
  2. 2.Center for the Study of Multiple-Drivers on Marine Socio-Ecological System (MUSELS)Universidad de ConcepciónConcepciónChile
  3. 3.Millennium Institute of Oceanography (IMO)Universidad de ConcepciónConcepciónChile
  4. 4.Instituto de Ciencias Naturales Alexander von HumboldtUniversidad de AntofagastaAntofagastaChile
  5. 5.Instituto de Ciencias Marinas y LimnológicasUniversidad Austral de Chile, Laboratorio Costero de Recursos Acuáticos de CalfucoValdiviaChile
  6. 6.Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos NaturalesUniversidad Andres BelloSantiagoChile
  7. 7.Centro de Investigación en Ecosistemas de la Patagonia (CIEP)CoyhaiqueChile
  8. 8.Facultad de Artes LiberalesUniversidad Adolfo IbáñezSantiagoChile
  9. 9.Center for Aquaculture Research (INCAR)SantiagoChile
  10. 10.Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Centro de Estudios Avanzados en Zonas Áridas (CEAZA)CoquimboChile

Personalised recommendations