Estuaries and Coasts

, Volume 38, Issue 2, pp 612–619 | Cite as

Macroecological Patterns of Estuarine Nematodes

Article

Abstract

In the present study, we test whether large-scale patterns of estuarine nematodes are predicted by the “everything is everywhere” (EiE) hypothesis or by the moderate endemicity hypothesis (MEH). Specifically, we tested whether nematode genus richness and composition differ among geographical regions, latitudes, and between habitats (estuaries with and without mangroves). The meta-analysis included published data from 43 estuaries around the world. Only the most abundant genera (>1 % of relative abundance) were considered in the analysis. Each estuary was treated as an analytical unit. Results indicated that genus richness did not differ among geographical regions and between habitats, whereas latitude explained 36 % of the variability in genus richness. Genus richness assumed a bimodal pattern with higher values around the equator and in temperate regions. Canonical analysis revealed distinct nematode genus compositions in three main geographical regions and in both habitat types. These results suggest that nematodes are dispersion-limited and influenced by environmental conditions. The main conclusion is that large-scale patterns of estuarine nematodes are better predicted by the MEH, in line with studies of macroorganisms. Moreover, nematode genus turnover decreased with increasing latitude, a pattern already reported for harpacticoid copepods, land birds, vascular plants, mammals, and butterflies.

Keywords

Latitudinal species richness pattern Nematoda Marine Estuarine Meta-analysis 

Notes

Acknowledgment

We thank the critical reading of Fabiane Gallucci and Jon Norenburg, as well as three anonymous reviewers. We thank Ruth Gingold (sweepandmore.com) for the critical reading and editing of the manuscript. GF is supported by FAPESP (2009/14019-0) and SN by CNPq (306740/2012-5).

Supplementary material

12237_2014_9844_MOESM1_ESM.doc (115 kb)
ESM Table 1 (DOC 115 kb)

References

  1. Alongi, D. 1987. The influence of mangrove-derived tannins on intertidal meiobenthos in tropical estuaries. Oecologia 71: 537–540.CrossRefGoogle Scholar
  2. Anderson, M.J., and J. Robinson. 2003. Generalised discriminant analysis based on distances. Australian & New Zealand Journal of Statistics 45: 301–318.CrossRefGoogle Scholar
  3. Anderson, M.J., and T.J. Willis. 2003. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84: 511–525.CrossRefGoogle Scholar
  4. Anderson, M.J., R.N. Gorley, and K.R. Clarke. 2008. PERMANOVA for PRIMER: guide to software and statistical methods. Plymouth, UK: PRIMER-E.Google Scholar
  5. Andrew, M.E., M.A. Wulder, N.C. Coops, and G. Baillargeon. 2012. Beta-diversity gradients of butterflies along productivity gradients. Global Ecology and Biogeography 21: 352–364.CrossRefGoogle Scholar
  6. Azovsky, A.I. 2000. Concept of scale in marine ecology: linking the words or the worlds? Web Ecology 1: 28–34.CrossRefGoogle Scholar
  7. Azovsky, A.I., and Y. Mazei. 2013. Do microbes have macroecology? Large-scale patterns in the diversity and distribution of marine benthic ciliates. Global Ecology and Biogeography 22: 163–172.CrossRefGoogle Scholar
  8. Azovsky, A.I., L.A. Garlitska, and E.S. Chertoprud. 2012. Broad-scale patterns in local diversity of marine benthic harpacticoid copepods (Crustacea). Marine Ecology Progress Series 460: 63–77.CrossRefGoogle Scholar
  9. Baas-Becking, L.G.M. 1934. Geobiologie of inleiding tot de milieukunde. The Hague, The Netherlands: W.P. van Stockum and Zoon.Google Scholar
  10. Bahn, V., and B.J. McGill. 2007. Can niche-based distribution models outperform spatial interpolation? Global Ecology and Biogeography 16: 733–742.CrossRefGoogle Scholar
  11. Bik, H., W.K. Thomas, D.H. Lunt, and J.P.D. Lambshead. 2010. Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida). BMC Evolutionary Biology 10: 389–399.CrossRefGoogle Scholar
  12. Boag, B., and G.W. Yeates. 1998. Soil nematodes bio- diversity in terrestrial ecosystem. Biodiversity and Conservation 7: 617–630.CrossRefGoogle Scholar
  13. Boucher, G., and P.G.D. Lambshead. 1995. Ecological biodiversity of marine nematodes in samples from temperate, tropical, and deep-sea regions. Conservation Biology 9: 1594–1604.CrossRefGoogle Scholar
  14. Chase, J.M., and J.A. Myers. 2012. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B 366: 2351–2363.CrossRefGoogle Scholar
  15. Clarke, K.R., and R.N. Gorley. 2006. PRIMER v6: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
  16. Condit, R., N. Pitman, E.G. Leigh Jr., J. Chave, J. Terborgh, R.B. Foster, V.P. Nuñez, S. Aguilar, R. Valencia, G. Villa, H. Muller-Landau, E. Losos, and S.P. Hubbell. 2002. Beta-diversity in tropical forest trees. Science 295: 666–669.CrossRefGoogle Scholar
  17. Cooper, J.A.G. 2001. Geomorphology of tide-dominated and river-dominated, barred microtidal estuaries: a contrast. Journal of Coastal Research 34: 428–436.Google Scholar
  18. Cooper, J.A.G. 2002. The role of extreme floods in estuary-coastal behaviour: contrasts between river- and tide-dominated microtidal estuaries. Sedimentary Geology 150: 123–157.CrossRefGoogle Scholar
  19. Cottenie, K. 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.CrossRefGoogle Scholar
  20. Curini-Galletti, M., T. Artois, V. Delogu, W.H. De Smet, D. Fontaneto, et al. 2012. Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter. PLoS ONE 7: e33801. doi: 10.1371/journal.pone.0033801.CrossRefGoogle Scholar
  21. Derycke, S., T. Remerie, A. Vierstraete, T. Backeljau, J. Vanfleteren, M. Vincx, and T. Moens. 2005. Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Marine Ecology Progress Series 300: 91–103.CrossRefGoogle Scholar
  22. Derycke, S., G. Fonseca, A. Vierstraete, J. Vanfleteren, M. Vincx, and T. Moens. 2008. Disentangling taxonomy within the Rhabditis (Pellioditis) marina (Nematoda, Rhabditidae) species complex using molecular and morphological tools. Zoological Journal of the Linnean Society 152: 1–15.CrossRefGoogle Scholar
  23. Elliot, M., and D.S. Mclusky. 2002. The need definitions in understanding estuaries. Estuarine Coastal and Shelf Science 55: 815–827.CrossRefGoogle Scholar
  24. Ellisson, A.M. 2002. Macroecology of mangroves: large scales patterns and processes in tropical coastal forests. Trees-Structure and Function 16: 181–194.CrossRefGoogle Scholar
  25. Fenchel, T., and B.J. Finlay. 2004. The ubiquity of small species: patterns of local and global diversity. Bioscience 54: 777–784.CrossRefGoogle Scholar
  26. Fenchel, T., and B.J. Finlay. 2006. The diversity of microbes: resurgence of the phenotype. Philosophical Transactions of the Royal Society B 361: 1965–1973.CrossRefGoogle Scholar
  27. Ferrero, T.J., N.J. Debenham, and P.J.D. Lambshead. 2008. The nematodes of the Thames estuary: assemblage structure and biodiversity with a test of Atrill´s linear model. Estuarine Coastal and Shelf Science 79: 409–418.CrossRefGoogle Scholar
  28. Finlay, B.J., and K.J. Clarke. 1999. Ubiquitous dispersal of microbial species. Nature 400: 828.CrossRefGoogle Scholar
  29. Foissner, W. 2006. Biogeography and dispersal of microorganisms: a review emphasizing protists. Acta Protozoologica 45: 111–136.Google Scholar
  30. Foissner, W. 2008. Protist diversity and distribution: some basic considerations. Biodiversity and Conservation 17: 235–242.CrossRefGoogle Scholar
  31. Foissner, W., A. Chao, and L.A. Katz. 2008. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodiversity and Conservation 17: 345–363.CrossRefGoogle Scholar
  32. Fonseca, G., and T. Soltwedel. 2009. Regional patterns of nematode assemblages in the Arctic deep seas. Polar Biology 32: 1345–1357.CrossRefGoogle Scholar
  33. Fonseca, G., T. Moens, and S. Derycke. 2008. Integrative taxonomy in two free-living nematode species complexes. Biologica Journal of the Linnean Society 94: 737–753.CrossRefGoogle Scholar
  34. Fonseca, G., T. Soltwedel, A. Vanreusel, and M. Lindegarth. 2010. Variation in nematode assemblages over multiple spatial scales and environmental conditions in Arctic deep seas. Progress in Oceanography 84: 174–184.CrossRefGoogle Scholar
  35. Fonseca, G., P. Hutchings, and F. Gallucci. 2011. Meiobenthic communities of seagrass beds (Zostera capricorni) and unvegetated sediments along the coast of New South Wales, Australia. Estuarine, Coastal and Shelf Science 91: 69−77.Google Scholar
  36. Fontaneto, D. 2006. Biogeography of microscopic organisms, is everything small everywhere. Cambridge: Cambridge University Press.Google Scholar
  37. Fontaneto, D., G.F. Ficetola, R. Ambrosini, and C. Ricci. 2006. Patterns of diversity in microscopic animals: comparable to protists or to larger animals? Global Ecology and Biogeography 15: 153–162.CrossRefGoogle Scholar
  38. Fontaneto, D., T.G. Barraclough, K. Chen, C. Ricci, and E.A. Herniou. 2008. Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Molecular Ecology 17: 3136–3146.CrossRefGoogle Scholar
  39. Gaston, K.J., R.G. Davies, C.D.L. Orme, V.A. Olson, G.H. Thomas, T.S. Ding, P.C. Rasmussen, J.J. Lennon, P.M. Bennett, I.P.F. Owens, and T.M. Blackburn. 2007. Spatial turnover in the global avifauna. Proceedings of the Royal Society B 274: 1567–1574.CrossRefGoogle Scholar
  40. Hawkins, B.A., R. Field, H.V. Cornell, D.J. Currie, et al. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84: 3105–3117.CrossRefGoogle Scholar
  41. Heip, C., M. Vincx, and G. Vranken. 1985. The ecology of marine nematodes. Oceanography and Marine Biology: an Annual Review 23: 399–489.Google Scholar
  42. Hewitt, J.E. 1998. The effect of changing sampling scales on our ability to detect effects of large-scale processes on communities. Journal of the Experimental Marine Biology and Ecology 227: 251–264.CrossRefGoogle Scholar
  43. Hillebrand, H. 2004a. On the generality of the latitudinal gradient. American Naturalist 163: 192–211.CrossRefGoogle Scholar
  44. Hillebrand, H. 2004b. Strength, slope and variability of marine latitudinal gradients. Marine Ecology Progress Series 273: 251–267.CrossRefGoogle Scholar
  45. Hillebrand, H., and A.L. Azovsky. 2001. Body size determines the strength of the latitudinal diversity gradient. Ecography 24: 251–256.CrossRefGoogle Scholar
  46. Hodda, M. 2007. Phylum Nematoda. Zootaxa 1668: 265–293.Google Scholar
  47. Hutchings, P. 1999. Taxonomy of estuarine invertebrates in Australia. Australian Journal of Ecology 24: 381–394.CrossRefGoogle Scholar
  48. Kirwan, M.L., G.R. Guntenspergen, and J.T. Morris. 2009. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Global Change Biology 15: 1982–1989.CrossRefGoogle Scholar
  49. Koleff, P., J.J. Lennon, and K.J. Gaston. 2003. Are there latitudinal gradients in species turnover? Global Ecology and Biogeography 12: 483–498.CrossRefGoogle Scholar
  50. Lambshead, P.J.D., J. Tietjen, T. Ferrero, and P. Jensen. 2000. Latitudinal diversity gradients in the deep sea with special reference to North Atlantic nematodes. Marine Ecology Progress Series 194: 159–167.CrossRefGoogle Scholar
  51. Lambshead, P.J.D., C.J. Brown, T.J. Ferrero, N.J. Mitchell, C.R. Smith, L.E. Hawkins, and J. Tietjen. 2002. Latitudinal diversity patterns of deep-sea marine nematodes and organic fluxes: a test from the central equatorial Pacific. Marine Ecology Progress Series 236: 129–135.CrossRefGoogle Scholar
  52. Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74: 1659–1673.CrossRefGoogle Scholar
  53. Logue, J.B., N. Mouquet, H. Peter, and H. Hillebrand. 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology & Evolution 26: 482–491.CrossRefGoogle Scholar
  54. McIntyre, H.L., and J.J. Cullen. 1996. Primary production by suspended and benthic microalgae in a turbid estuary: time scale variability in Santo Antonio Bay, Texas. Marine Ecology Progress Series 145: 245–268.CrossRefGoogle Scholar
  55. Midgley, G.F., J. Bond, V. Kapos, C. Ravilious, J.P.W. Scharlemann, and F.I. Woodward. 2010. Terrestrial carbon stocks and biodiversity: key knowledge gaps and some policy implications. Current Opinion in Environmental Sustainability 2: 264–270.CrossRefGoogle Scholar
  56. Moens, T., and M. Vincx. 1997. Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom 77: 211–227.CrossRefGoogle Scholar
  57. Nanajkar, M., and B. Ingole. 2010. Comparison of tropical nematode communities from the three harbors, west coast of India. Cahiers de Biologie Marine 51: 9–18.Google Scholar
  58. Odum, W.E. 1988. Comparative ecology of tidal freshwater and salt marshes. The Annual Review of Ecology, Evolution, and Systematics 19: 147–176.CrossRefGoogle Scholar
  59. Peterson, C., K. Scheidegger, P. Komar, and W. Niem. 1984. Sediment composition and hydrography in six high-gradient estuaries of the northwestern United States. Journal of Sedimentary Research 54: 86–97.Google Scholar
  60. Procter, D.L.C. 1984. Towards a biogeography of free-living soil nematodes. I. Changing species richness, diversity and densities with changing latitude. Journal of Biogeography 11: 103–117.CrossRefGoogle Scholar
  61. Qian, H., and R.E. Ricklefs. 2007. A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecological Letters 10: 737–744.CrossRefGoogle Scholar
  62. Qian, H., C.F. Badgley, and L. David. 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecology and Biogeography 18: 111–122.CrossRefGoogle Scholar
  63. Sebastian, S., M. Raes, I. De Mesel, and A. Vanreusel. 2007. Comparison of the nematode fauna from the Weddell Sea Abyssal plain with two North Atlantic abyssal sites. Deep-Sea Research Part II 54: 1727–1736.CrossRefGoogle Scholar
  64. Smith, C.R., W. Berelson, D.J. Demaster, F.C. Dobbs, D. Hammond, D.J. Hoover, R.H. Pope, and M. Stephens. 1997. Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux. Deep-Sea Research Part II 44: 2295–2317.CrossRefGoogle Scholar
  65. Vanreusel, A., G. Fonseca, R. Danovaro, et al. 2010. The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity. Marine Ecology 31: 6–20.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  1. 1.Departamento de Ciências do MarUniversidade Federal de São PauloSantosBrazil
  2. 2.Marine Science LaboratoryUniversity of Southern Santa CatarinaTubarãoBrazil

Personalised recommendations