Estuaries and Coasts

, Volume 38, Issue 1, pp 296–309 | Cite as

Patterns of Plant Species Richness Along Environmental Gradients in German North Sea Salt Marshes

Article

Abstract

In salt marshes, species richness changes along environmental, disturbance and productivity gradients forming a complex network of abiotic and biotic factors. On 2,691 plots along 121 transects, we sampled vegetation along the German mainland North Sea coast (13 regions) during 1987–1989. Applying regression tree analysis (RTA), we now used this large data set to analyse variance in species richness (SRich) in relation to 13 explanatory variables varying on different scales. SRich (mean, 4.9 per m2) was significantly correlated to most variables. Only six variables were included in our final model, together explaining 68.5 % of variance in SRich, in hierarchical order: moisture, salinity, evenness, nitrogen, region and elevation. Predominantly, SRich was limited by environmental heterogeneity (moisture, salinity and nitrogen, each explained approx. 50 % variance). SRich tended to be high on plots exhibiting a combination of low moisture, salinity and nitrogen values, with high evenness—and especially high in some regions when plots were lying high in relation to mean high tide. Grazing regimes did not affect SRich significantly. In conclusion, our model showed that SRich in the study area was predominantly explained on a small scale and less along large-scale gradients. RTA proved suitable to identify the set of variables that mainly explained variance in SRich. Our tree model improves the understanding of richness patterns in salt marshes and can be used to predict species richness for the study area. Furthermore, our data provide a reference to detect richness changes due to, for example, management changes or sea level rise.

Keywords

Ellenberg’s indicator values Grazing management HOF-modelling Regression tree analysis (RTA) Sea level rise (SLR) Species diversity 

Notes

Acknowledgements

Our thanks go to all management and contracting authorities for supporting this project. Special thanks are due to the Schleswig-Holstein Agency for Coastal Defence, National Park and Marine Conservation National Park Authority for the excellent and constructive cooperation and for providing data from the automatically recording tide gauges along the North Sea coast. Furthermore, we thank a few anonymous hands for field assistance and data collection, Jens Oldeland for helpful advice regarding statistics and Wiebke Schoenberg for support in GIS. Thanks go also to a few anonymous colleagues, the editor and two anonymous reviewers for their helpful comments improving the manuscript, and to Tom Maxfield for carefully reviewing the correct use of English.

Supplementary material

12237_2014_9810_MOESM1_ESM.pdf (185 kb)
ESM (PDF 185 kb)

References

  1. Adam, P. 1993. Saltmarsh ecology. Cambridge studies in ecology, 1 paperbackth ed. Cambridge: Cambridge University Press.Google Scholar
  2. Andersen, M.C., J.M. Watts, J. Freilich, S.R. Yool, G.I. Wakefield, J.F. McCauley, and P.B. Fahnestock. 2000. Regression-tree modeling of desert tortoise habitat in central Mojave desert. Ecological Applications 10: 890–900.CrossRefGoogle Scholar
  3. Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.CrossRefGoogle Scholar
  4. Beeftink, W.G. 1977. The coastal salt marshes of Western and Northern Europe: an ecological and phytosociological approach. In Ecosystems of the World I, wet coastal ecosystems, ed. V.J. Chapman, 109–155. Amsterdam: Elsevier.Google Scholar
  5. Behre, K.-E. 2005. Meeresspiegelanstieg–Marschentwicklung-Küstenlinien. Die letzten 10000 Jahre an der deutschen Nordseeküste im Zeitraffer. In Kulturlandschaft Marsch. Natur, Geschichte, Gegenwart. Vorträge anlässlich des Symposiums in Oldenburg vom 3. bis 5. Juni 2004, ed. M. Fansa, 25–36. Schriftenreihe des Landesmuseums für Natur und Mensch, Heft 33. Oldenburg: Isensee-Verlag.Google Scholar
  6. Bertness, M.D., and A.M. Ellison. 1987. Determinants of pattern in a New England salt marsh plant community. Ecological Monographs 57: 129–147.CrossRefGoogle Scholar
  7. Bockelmann, A.-C., and R. Neuhaus. 1999. Competitive exclusion of Elymus athericus from a high-stress habitat in a European salt marsh. Journal of Ecology 87: 503–513.CrossRefGoogle Scholar
  8. Boorman, L.A. 1999. Salt marshes—present functioning and future change. Mangroves and Salt Marshes 3: 227–241. doi: 10.1023/A:1009998812838.CrossRefGoogle Scholar
  9. Bos, D., J.P. Bakker, Y. de Vries, and S. van Lieshout. 2002. Long-term vegetation changes in experimentally grazed and ungrazed back-barrier marshes in the Wadden Sea. Applied Vegetation Science 5: 45–54.Google Scholar
  10. Breiman, L., J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984. Classification and regression trees. Pacific Grove/CA: Wadsworth & Brooks/Cole.Google Scholar
  11. Burnham, K., and D.R. Anderson. 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33: 261–304. doi: 10.1177/0049124104268644.CrossRefGoogle Scholar
  12. Clark, L.A., and D. Pregibon. 1992. Tree-based models. In Statistical models in S, chapter 9, ed. J.M. Chambers and T.J. Hastie, 377–420. New York: Chapman & Hall.Google Scholar
  13. Connell, J.H. 1978. Diversity in tropical rain forests and coral reefs. High diversity is maintained only in a nonequilibrium state. Science 199: 1302–1310.CrossRefGoogle Scholar
  14. Davy, A.J., M.J.H. Brown, H.L. Mossman, and A. Grant. 2011. Colonization of a newly developing salt marsh: disentangling independent effects of elevation and redox potential on halophytes. Journal of Ecology 99: 1350–1357. doi: 10.1111/j.1365-2745.2011.01870.x.CrossRefGoogle Scholar
  15. De’ath, G., and K.E. Fabricius. 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81: 3178–3192.CrossRefGoogle Scholar
  16. Dengler, J. 2012. Skalenabhängigkeit von Biodiversität–von der Theorie zur Anwendung. Forschungsbericht zur kumulativen Habilitation: Universität Hamburg, Fachbereich Biologie.CrossRefGoogle Scholar
  17. R Development Core Team 2012. A language and environment for statistical computing. http://www.cran.r-project.org, Vienna/Austria.
  18. Diekmann, M. 2003. Species indicator values as an important tool in applied plant ecology—a review. Basic and Applied Ecology 4: 493–506.CrossRefGoogle Scholar
  19. Dijkema, K.S. 1983. The salt-marsh vegetation of the mainland coast, estuaries and halligen. In Flora and vegetation of the Wadden Sea islands and coastal areas, ed. K.S. Dijkema and W.J. Wolff, 185–220. Rotterdam: A.A. Balkema. Report 9: final report of the section 'Flora and vegetation of the islands' of the Wadden Sea Working Group.Google Scholar
  20. Ellenberg, H., H.E. Weber, R. Düll, V. Wirth, W. Werner, and D. Paulissen. 1992. Zeigerwerte von Pflanzen in Mitteleuropa, Scripta Geobotanica, vol. 18, 2nd ed, 1–258. Göttingen: Verlag Erich Goltze.Google Scholar
  21. Engels, J.G., and K. Jensen. 2009. Patterns of wetland plant diversity along estuarine stress gradients of the Elbe (Germany) and Connecticut (USA) Rivers. Plant Ecology & Diversity 2: 301–311. doi: 10.1080/17550870903508947.CrossRefGoogle Scholar
  22. Esselink, P., L.F.M. Fresco, and K.S. Dijkema. 2002. Vegetation change in a man-made salt marsh affected by a reduction in both grazing and drainage. Applied Vegetation Science 5(1): 17–32.Google Scholar
  23. Esselink, P., J. Petersen, S. Arens, J.P. Bakker, J. Bunje, K.S. Dijkema, N. Hecker, U. Hellwig, A.-V. Jensen, A.S. Kers, P. Körber, E.J. Lammerts, M. Stock, R.M. Veeneklaas, M. Vreeken, and M. Wolters. 2009. Salt Marshes. Quality Status Report 2009. Thematic Report No. 8. Wadden Sea Ecosystem No. 25. Wilhelmshaven, Germany: Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group.Google Scholar
  24. García, L.V., T. Marañón, A. Moreno, and L. Clemente. 1993. Above-ground biomass and species richness in a Mediterranean salt marsh. Journal of Vegetation Science 4: 417–424. doi: 10.2307/3235601.CrossRefGoogle Scholar
  25. Gough, L., J.B. Grace, and K.L. Taylor. 1994. The relationship between species richness and community biomass: the importance of environmental variables. Oikos 70: 271–279.CrossRefGoogle Scholar
  26. Grace, J.B., and B.H. Pugesek. 1997. A structural equation model of plant species richness and its application to a coastal wetland. American Naturalist 149: 436–460. doi: 10.1086/285999.CrossRefGoogle Scholar
  27. Grandt, E. 2007. vEGplan, version 1.9c, Hamburg/Germany.Google Scholar
  28. Grime, J.P. 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344–347.CrossRefGoogle Scholar
  29. Grime, J.P. 1979. Plant strategies and vegetation processes. New York, Brisbane, Toronto: John Wiley & Sons, Chichester.Google Scholar
  30. Hamburg, Deutsches Hydrographisches Institut. 1989. Hoch- und Niedrigwasserzeiten für die Deutsche Bucht und deren Flußgebiete 1990. Hamburg: Deutsches Hydrographisches Institut Hamburg.Google Scholar
  31. Hammer, Ø., D.A.T. Harper, and P.D. Ryan. 2001. PAST–palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9. Oslo, Norway. http://folk.uio.no/ohammer/past.Google Scholar
  32. Heegaard, E. 2002. The outer border and central border for species-environmental relationships estimated by non-parametric generalised additive models. Ecological Modelling 157: 131–139.CrossRefGoogle Scholar
  33. Houle, G. 2005. A multivariate analysis of fine-scale species density in the plant communities of a saltwater lagoon—the importance of disturbance intensity. Oikos 111: 465–472.CrossRefGoogle Scholar
  34. Huisman, J., H. Olff, and L.F.M. Fresco. 1993. A hierarchical set of models for species response analysis. Journal of Vegetation Science 4: 37–46.CrossRefGoogle Scholar
  35. Huston, M. 1979. A general hypothesis of species diversity. American Naturalist 113: 81–101.CrossRefGoogle Scholar
  36. IPCC. 2007. Climate change 2007: the physical science basis. In Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm.Google Scholar
  37. Iverson, L.R., and A.M. Prasad. 1998. Predicting abundance for 80 tree species following climate change in the Eastern United States. Ecological Monographs 68: 465–485.CrossRefGoogle Scholar
  38. Jansen, F. 2008. Shape of species resonses: Huisman-Olff-Fresco models revisited. In Frontiers of vegetation science—an evolutionary angle, ed. L. Mucina, J.M. Kalwij, V.R. Smith, M. Chitrý, P.S. White, S.S. Cilliers, V.D. Pillar, M. Zobel, and I.-F. Sun, 80–81. Somerset West, South Africa: Keith Phillips Images.Google Scholar
  39. Jansen, F., and J. Oksanen. 2013. How to model species responses along ecological gradients—Huisman-Olff-Fresco models revisited. Journal of Vegetation Science. doi: 10.1111/jvs.12050.Google Scholar
  40. Jensen, A. 1985. The effect of cattle and sheep grazing on salt-marsh vegetation at Skallingen, Denmark. Vegetatio 60: 37–48.CrossRefGoogle Scholar
  41. Kiehl, K., H. Schröder, and M. Stock. 2007. Long-term vegetation dynamics after land-use change in Wadden Sea salt marshes. In Restoration of coastal ecosystems, Coastline Reports, vol. 7, ed. M. Isermann and K. Kiehl, 17–24.Google Scholar
  42. Landesamt für den Nationalpark Schleswig-Holsteinisches Wattenmeer und Umweltbundesamt. 1998. Umweltatlas Wattenmeer. Band I: Nordfriesisches und Dithmarscher Wattenmeer. Stuttgart: Ulmer.Google Scholar
  43. Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74: 1659–1673.CrossRefGoogle Scholar
  44. McKenzie, N.J., and P.J. Ryan. 1999. Spatial prediction of soil properties using environmental correlation. Geoderma 89: 67–94.CrossRefGoogle Scholar
  45. Mitsch, W.J., and J.G. Gosselink. 2000. Wetlands, 3rd ed. New York: John Wiley & Sons, Inc.Google Scholar
  46. Moeslund, J.E., L. Arge, P.K. Bøcher, B. Nygaard, and J.-P. Svenning. 2011. Geographically comprehensive assessment of salt-meadow vegetation-elevation relations using LiDAR. Wetlands 31: 471–482. doi: 10.1007/s13157-011-0179-2.CrossRefGoogle Scholar
  47. Moore, D.M., B.G. Lees, and S.M. Davey. 1991. A new method for predicting vegetation distributions using decision tree analysis in a geographic information system. Environmental Management 15: 59–71. doi: 10.1007/BF02393838.CrossRefGoogle Scholar
  48. Oksanen, J., and P.R. Minchin. 2002. Continuum theory revisited: what shape are species responses along ecological gradients? Ecological Modelling 157: 119–129.CrossRefGoogle Scholar
  49. Oksanen, J., and P.R. Minchin. 2002b. Non-linear maximum likelihood estimation of Beta and HOF response models. http://cc.oulu.fi/~jarioksa/softhelp/hof3.pdf.
  50. Olff, H., J. de Leeuw, J.P. Bakker, R.J. Platerink, H.J. van Wijnen and W. de Munck. 1997. Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. Journal of Ecology 85: 799–814.Google Scholar
  51. Olff, H., and M.E. Ritchie. 1998. Effects of herbivores on grassland plant diversity. Trends in Ecology & Evolution 13: 261–265.CrossRefGoogle Scholar
  52. Pausas, J.G., and M.P. Austin. 2001. Patterns of plant species richness in relation to different environments: an appraisal. Journal of Vegetation Science 12: 153–166.CrossRefGoogle Scholar
  53. Peppler-Lisbach, C., and M. Kleyer. 2009. Patterns of species richness and turnover along the pH gradient in deciduous forests: testing the continuum hypothesis. Journal of Vegetation Science 20: 984–995.CrossRefGoogle Scholar
  54. Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131–144.CrossRefGoogle Scholar
  55. Prokosch, P., and N. Kempf. 1988. Die Nutzung der Salzwiesen im schleswig-holsteinischen Wattenmeer. In Salzwiesen: Geformt von Küstenschutz, Landwirtschaft oder Natur? ed. N. Kempf, J. Lamp, and P. Prokosch, 101–112 and 140–147, 2nd ed. Tagungsbericht 1 der Umweltstiftung WWF-Deutschland. Husum: Husum Druck- und Verlagsgesellschaft.Google Scholar
  56. Rangel, T.F., J.A.F. Diniz-Filho, and L.M. Bini. 2010. SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33: 1–5.CrossRefGoogle Scholar
  57. Ranwell, D.S. 1972. Ecology of salt marshes and sand dunes. London: Chapman & Hall.Google Scholar
  58. Sánchez, J.M., J. Izco, and M. Medrano. 1996. Relationships between vegetation zonation and altitude in a salt-marsh system in northwest Spain. Journal of Vegetation Science 7: 695–702.CrossRefGoogle Scholar
  59. Sánchez, J.M., X.L. Otero, and J. Izco. 1998. Relationships between vegetation and environmental characteristics in a salt-marsh system on the coast of northwest Spain. Plant Ecology 136: 1–8.CrossRefGoogle Scholar
  60. Schröder, H.K., K. Kiehl, and M. Stock. 2002. Directional and non-directional vegetation changes in a temperate salt marsh in relation to biotic and abiotic factors. Applied Vegetation Science 5: 33–44.Google Scholar
  61. Scull, P., J. Franklin, and O.A. Chadwick. 2005. The application of classification tree analysis to soil type prediction in a desert landscape. Ecological Modelling 181: 1–15.CrossRefGoogle Scholar
  62. Sharpe, P.J., and A.H. Baldwin. 2009. Patterns of wetland plant species richness across estuarine gradients of Chesapeake Bay. Wetlands 29: 225–235.CrossRefGoogle Scholar
  63. Sherrod, P.H. 2010. DTREG – Predictive Modeling Software. http://www.dtreg.com/DTREG.pdf.
  64. Siegel, S., and N.J. Castellan Jr. 1988. Nonparametric statistics for the behavioral sciences, 2nd ed. New York: McGraw-Hill.Google Scholar
  65. StatSoft, Inc. 2007. STATISTICA 8.0. Tulsa, OK, USA.Google Scholar
  66. Stock, M., K. Kiehl, and H.D. Reinke. 1998. Salt marsh protection in the Schleswig-Holstein Wadden Sea. UBA-Texte 84/97. Berlin: Federal Environmental Agency (Umweltbundesamt).Google Scholar
  67. Stock, M., S. Gettner, H. Hagge, K. Heinzel, J. Kohlus, and H. Stumpe. 2005. Salzwiesen an der Westküste von Schleswig-Holstein 1988–2001. Schriftenreihe Nationalpark Schleswig-Holsteinisches Wattenmeer 15: 1–239.Google Scholar
  68. Suchrow, S., and K. Jensen. 2010. Plant species responses to an elevational gradient in German North Sea salt marshes. Wetlands 30: 735–746. doi: 10.1007/s13157-010-0073-3.CrossRefGoogle Scholar
  69. Suchrow, S., N. Pohlmann, M. Stock, and K. Jensen. 2012a. Long-term surface elevation changes in German North Sea salt marshes. Estuarine, Coastal and Shelf Science 98: 71–83. doi: 10.1016/j.ecss.2011.11.031.CrossRefGoogle Scholar
  70. Suchrow, S., M. Stock, and K. Jensen. 2012b. Database of German north sea salt marshes–vegetation and elevation. In Vegetation databases for the 21st century, ed. J. Dengler, J. Oldeland, F. Jansen, M. Chytrý, J. Ewald, M. Finckh, F. Glöckler, G. Lopez-Gonzalez, R.K. Peet, and J.H.J. Schaminée. Biodiversity & Ecology 4: 370–370. doi: 370  10.7809/b-e.00160. Hamburg.
  71. Tyler, R.M., D.C. Brady, and T.E. Targett. 2009. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries and Coasts 32: 123–145. doi: 10.1007/s12237-008-9108-x.CrossRefGoogle Scholar
  72. Wanner, A., S. Suchrow, K. Kiehl, W. Meyer, N. Pohlmann, M. Stock, and K. Jensen. 2013. Scale matters: impact of management regime on plant species richness and vegetation type diversity in Wadden Sea salt marshes. Agriculture, Ecosystems and Environment. http://dx.doi.org/ 10.1016/j.agee.2013.08.014.
  73. Wesuls, D., M. Pellowski, S. Suchrow, J. Oldeland, F. Jansen, and J. Dengler. 2013. The grazing fingerprint: modelling species responses and trait patterns along grazing gradients in semi-arid Namibian rangelands. Ecological Indicators 27: 61–70.CrossRefGoogle Scholar
  74. Wigand, C., R.A. McKinney, M.A. Charpentier, M.M. Chintala, and G.B. Thursby. 2003. Relationships of nitrogen loadings, residential development, and physical characteristics with plant structure in New England salt marshes. Estuaries 26: 1494–1504.CrossRefGoogle Scholar
  75. Wisskirchen, R., and H. Haeupler. 1998. Standardliste der Farn- und Blütenpflanzen Deutschlands. Stuttgart: Ulmer.Google Scholar
  76. Wolters, M., A. Garbutt, and J.P. Bakker. 2005. Plant colonization after managed realignment—the relative importance of diaspore dispersal. Journal of Applied Ecology 42: 770–777.CrossRefGoogle Scholar
  77. Zedler, J.B., J.C. Callaway, J.S. Desmond, G. Vivian-Smith, G.D. Williams, G. Sullivan, A.E. Brewster, and B.K. Bradshaw. 1999. Californian salt-marsh vegetation: an improved model of spatial pattern. Ecosystems 2: 19–35. doi: 10.1007/s100219900055.CrossRefGoogle Scholar
  78. Zelený, D., and A.P. Schaffers. 2012. Too good to be true: pitfalls of using mean Ellenberg’s indicator values in vegetation analyses. Journal of Vegetation Science 23: 419–431.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  1. 1.Biocentre Klein Flottbek and Botanical GardenHamburgGermany
  2. 2.Schleswig-Holstein Agency for Coastal Defence, National Park and Marine Conservation - National Park AuthorityTönningGermany

Personalised recommendations